CIGRE-US National Committee

2024 Next Generation Network Paper Competition

Enhancing Power Distribution Defect Identification with Video-based Computer Vision

Zefan Tang, PhD, Jiangwei Wang, PhD, Junhui Zhao, PhD Eversource Energy November 12, 2024

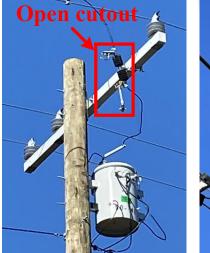
Why Video and Al-based Inspection?

- **Distribution Inspections**
 - Asset verification, damage assessment, vegetation inspection, post-storm inspection, etc.
- Traditional Methods
 - 2 labors 1 driver and 1 inspector
- Difficulties
 - Limited resources
 - Majority of the time spent behind the wheels
 - Large geographical area
 - Lack of a master database to track work and perform post analytics

Defects in the distribution system

What is Video and Al-based Inspection?

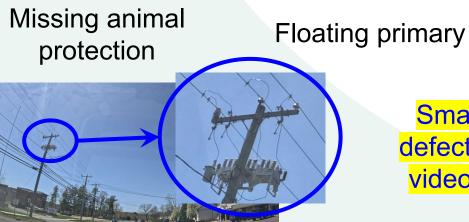
- Truck mounted dash cameras
 - 4k@30fps inspection videos
 - 10Hz GPS location
- Advantages
 - Safe: Drivers only focus on driving
 - Huge cost savings
 - Up to 75% labor hours saved
 - One driver, no stop for recording defects
 - Faster assessment and recovery
 - Multiple purpose benefits with same efforts, such as
 - Asset verification
 - Defect detection
 - Vegetation inspection
 - Post-storm inspection, etc.



AI generates results automatically

Challenges

Distribution defects:



Open cutout

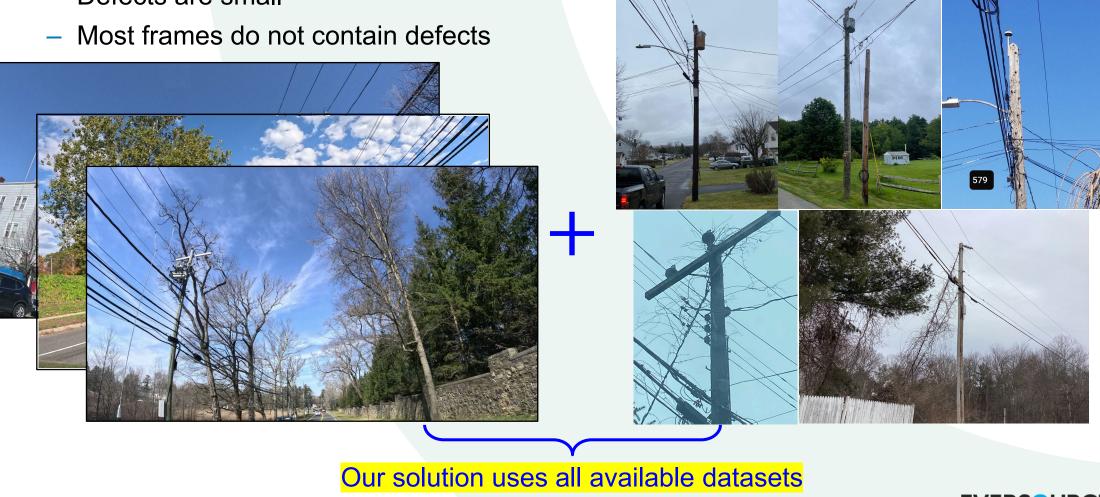
Rusted transformer

- Detection challenges:
 - 1) Small defects
 - 2) Limited training data

Small/Tiny defects in the video frame

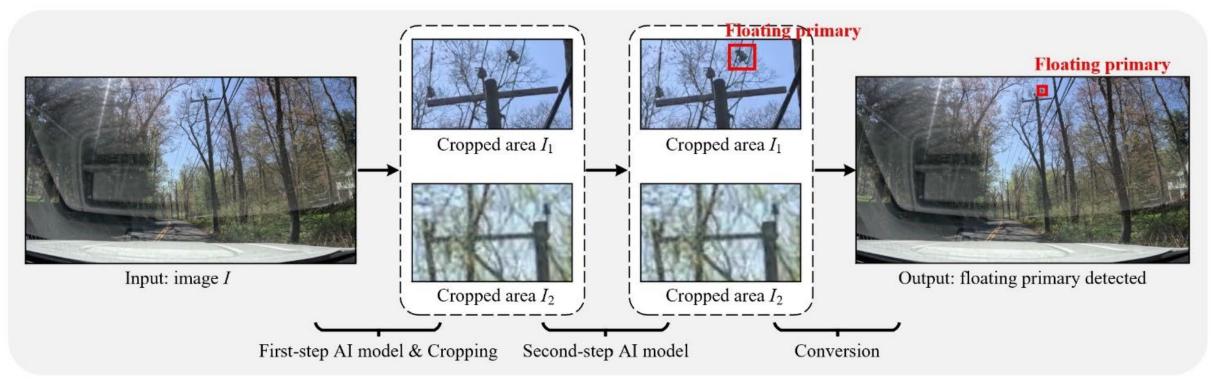
Floating primary

ned pole


Vined pole

Available Datasets

- 1. <u>Video frames:</u>
 - Defects are small


2. Photos taken by hand-held devices:

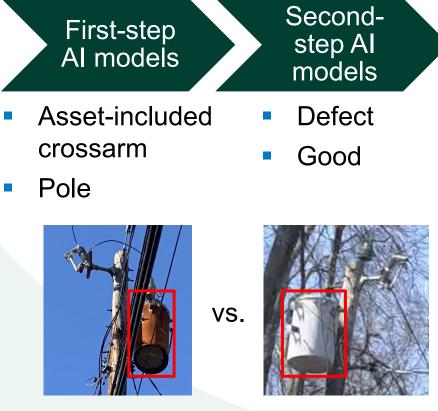
- Many images for each defect
- Varying dimensions, sizes, backgrounds

Our Solution: Two-Step Defect Detection

Small object detection

- 1. First-step detection:
 - Pole detection: YOLOv8
 - Training data: Video frames
 - Cropping

- 2. Second-step detection:
 - Defect detection: YOLOv8


Training data: Cropped images

EVERS=URCE ³³

Our Solution: Two-Step Defect Detection

Table I: The numbers of images and labels for each model

Stage	Model	Object	Images	Labels
First step	Model 1	asset-included crossarm	613	635
	Model 2	pole	1585	<mark>1878</mark>
Second step	Model 3	open cutout	510	531
		closed cutout	512	516
	Model 4	rusted transformer	1261	719
		good transformer	1201	915
	Model 5	missing animal protection	152	488
		animal guard	453	536
	Model 6	floating primary	(7)	526
		good primary	672	1443
	Model 7	vined pole	806	<mark>398</mark>
		good pole	806	411

Rusted transformer Good transformer

EVERS=URCE ³⁴

Demo: Defect Detection Results

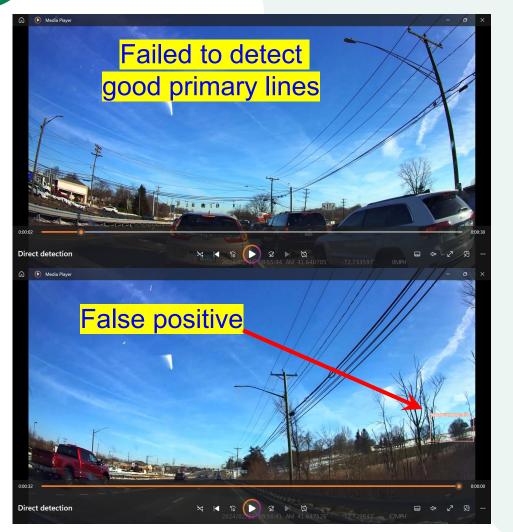
Defects:

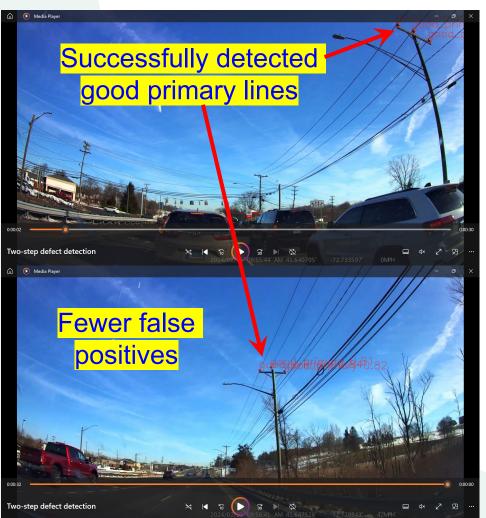
- Open cutout
- Rusted XFMR
- Vined pole
- Double pole

Defect Detection Results

Table II: Performance of each AI model

Stage	Model	Object	Precision	Recall	mAP50	mAP50-95	Ĩ
First step	Model 1	asset-included crossarm	95.5%	93.5%	96.5%	85.3%	
	Model 2	pole	91.4%	93.0%	95.7%	78.5%	
Second step	Model 3	open cutout	<mark>98.5%</mark>	96.8%	98.9%	82.4%	
		closed cutout	97.6%	<mark>97.0%</mark>	<mark>99.2%</mark>	76.4%	
		rusted transformer	97.5%	95.3%	99.1%	<mark>88.5%</mark>	
	Model 4	good transformer	95.2%	96.9%	98.1%	87.9%]
	Model 5	missing animal protection	83.7%	<mark>81.5%</mark>	<mark>87.8%</mark>	48.3%	
		animal guard	82.8%	83.3%	90.6%	50.8%	
	Model 6	floating primary	94.1%	92.1%	96.2%	71.4%	
		good primary	97.4%	95.0%	98.6%	78.7%	
	Model 7	vined pole	90.6%	94.2%	96.3%	72.6%	
		good pole	93.2%	96.9%	96.2%	76.6%	


- First-step AI models:
 - Precision, recall > 90%
 - A robust foundation
- Second-step AI models:
 - <u>Missing animal protection:</u>
 Precision, recall > 80%
 - <u>Others:</u> Precision, recall > 90%


36

Comparison Results

Comparison between direct and two-step detection

Direct detection results

- Higher precision and recall
- Fewer
 false
 positives

Two-step detection results Eversource Energy Copyright

Conclusions

Traditional Distribution Inspections

- I driver, 1 inspector
- Limited resources, time consuming, unsafe

Video and AI-based Inspections

- Drivers only focus on driving (No inspections while driving)
- Huge cost savings, faster assessment and recovery, multiple purpose benefits with same efforts

Two-Step Defect Detection

- Small object detection
- All available datasets
- Better precision and recall scores

