# Switching to something better?

A webinar about SF<sub>6</sub>-alternatives and a Norwegian researcher's life and career





- A short introduction: Nina
- Growing up in a small town
- Moving to Trondheim
- What now?
- Finishing a PhD
- SINTEF Energy Research
- CIGRE
- Research projects: at work and at home

- A short introduction: SF<sub>6</sub>
- A growing concern
- Moving to alternatives?
- The challenge of using another gas
- Did you say plus?
- Going higher!
- So many options!
- Restrictions and possibilities

#### A short introduction: Nina

- Nina Sasaki Støa-Aanensen
- Born in 1987
- Lives in Trondheim, Norway, with a husband and a dog
- Work as a Senior Research Scientist at SINTEF Energy Research
- Norwegian representative in CIGRE Study Committee A3



## A short introduction: SF<sub>6</sub>

- Sulphur Hexafluoride
- Sulphur: space for six friends
- Fluorine: the most electronegative element
- A "world champion" in:
  - Current interruption performance
  - Electric insulation performance
  - Stable and non-toxic
  - The ideal switchgear gas
  - Highest global warming potential per kg, 24 300 times higher than CO<sub>2</sub>



## A short introduction: SF<sub>6</sub>

- 1980-1990s, SF<sub>6</sub> used for:
  - MV and HV switchgear
  - Cover gas for magnesium / metal industry
  - Window insulation gas
  - Military applications
  - Nike Air Max
  - Luxury car tyres
  - Medical use
- An example from Norway



Table 2:SF6 consumption in Norway.

| Consumers                                         | SF <sub>6</sub><br>consumption<br>1990<br>(ka) | SF <sub>6</sub><br>consumption<br>1991<br>(kg) | SF <sub>6</sub><br>consumption<br>1992<br>(kg) | Estimated SF <sub>6</sub><br>consumption<br>1993<br>(kg) |
|---------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|----------------------------------------------------------|
| Magnesium Industry                                | 89 400                                         | 84 000                                         | 22 800                                         | 22 800                                                   |
| Aluminium industry                                | -                                              | -                                              | 3 125                                          | 6 000                                                    |
| Secondary foundries                               | 765                                            | 550                                            | 830                                            | 1 610                                                    |
| GIS<br>145 kV, 300 kV, and<br>420 kV installation | 16 875                                         | 1 875                                          | 25 625                                         | 7 500                                                    |
| GIS<br>12 kV and 24kV<br>installation             | 4 500                                          | 5 700                                          | 6 760                                          | 7 760                                                    |
| Sound insulating glass                            | *                                              | 300                                            | 700                                            | 500                                                      |
| TOTALT                                            | 111 540                                        | 92 425                                         | 59 840                                         | 46 170                                                   |

\* The consumption is not estimated.





Navy personnel launch a torpedo powered by  $SF_6$  among other const Mass Communication Specialist Seaman Leah Allen

https://nilu.brage.unit.no/nilu-xmlui/bitstream/handle/11250/2717927/OR-15

### Growing up in a small town: Farsund

- About 10 000 people
- Peninsula at the south coast of Norway
- Lots of sandy beaches
- A lot of wind
- An aluminium smelter
- A pipe-coating facility



### Growing up in a small town: Farsund

- Myself, an older sister and two parents
- Good at school
- Bad at sports
- Music (piano, choir, brass band)
- Wanted a dog, but never got one
- In the nerd category : P
- Enough good friends!
- 1987-2006



## A growing concern around SF<sub>6</sub>

- The Intergovernmental Panel on Climate Change (IPCC) was established in 1988 to provide policymakers with regular scientific assessments on the current state of knowledge about climate change.
- 1997: Kyoto protocol listed six greenhouse gases that we should limit emissions of to slow down global warming, SF<sub>6</sub> was one of them.
- 2006: First F-gas regulation passed in the EU, prohibited use of SF<sub>6</sub> for certain applications



Article 8

#### **Control of use**

1. The use of sulphur hexafluoride or preparations thereof in magnesium die-casting, except where the quantity of sulphur hexafluoride used is below 850 kg per year, shall be prohibited from 1 January 2008.

2. The use of sulphur hexafluoride or preparations thereof for the filling of vehicle tyres shall be prohibited from 4 July 2007.

### Moving to Trondheim

- From 10 000 -> 160 000
- From coast to river + fjord
- More snow, less light during winter (today 09:50-14:30)
- Norwegian University of Science and Technology
  - Norway's largest university, >43 000 students
- Master of Science: Applied Physics and Mathematics
- Lots of new friends, even a boyfriend?!
- A lot of things to learn
- Spent summers in Farsund, working at the aluminium smelter
- One semester in Glasgow, Scotland
- 2006-2011



### Moving to alternatives?

- The search for something better than SF<sub>6</sub> never stopped, but the Kyoto protocol accelerated the need and motivation to look for an alternative
- The global warming concern, and ban on other applications than in switchgear starts to show effects
- Papers exploring different alternatives (new and old) are regularly published
  - Pressurised air
  - Mixtures with SF<sub>6</sub>
  - CF<sub>4</sub>
  - CF<sub>3</sub>I
  - CO<sub>2</sub>
  - (Vacuum technology)
  - ...



#### Fundamental Research on SF<sub>6</sub>-free Gas Insulated Switchgean Adopting CO<sub>2</sub> Gas and Its Mixtures

#### Toshiyuki Uchii<sup>1</sup>, Yoshikazu Hoshina<sup>1</sup>, Hiromichi Kawano<sup>1</sup> Katsumi Suzuki<sup>1</sup>, Tetsuya Nakamoto<sup>1</sup> and Mitsuru Toyoda<sup>2</sup> I. Power and Industria Systems R&D Center, Toshiba Corporation, Kawasaki, Japan 2. HamaBwasiki Operations, Toshiba Corporation, Kawasaki, Japan

ational Symposium on EcoTopia Science 2007. ISETS07 (200

Abstract "Inclusioned properties of CO<sub>0</sub> gas and its mixtures as an are quenching and inculating median for a high-bound prove equipment wave investigned theorischild and experimentally. It was noted that "schlader" technique utilizing are energy effectively to enhance pather possible and experimentally. It was noted that "schlader" technique utilizing are energy effectively to enhance pather possible and the schlader and the schlader and the schlader technique and the schlader technique and the schlader and the schlader. The schlader and the

Keywords: SF<sub>6</sub> gas, CO<sub>2</sub> gas, mixture, gas insulated switchgear(GIS), gas circuit breaker(GCB), global warming

#### Investigation of the Performance of $CF_3I$ Gas as a Possible Substitute for $SF_6$

H. Katagiri, H. Kasuya, H. Mizoguchi, and S.Yanabu Tokyo Denki University, 2-2 Kanda-Nishiki-cho, Chiyoda-ku, Tokyo, Japan

#### ABSTRACT

Our research has investigated the use of CF<sub>1</sub>, which has lower Global Warming Potential (GWP) as a substitted gen for SF<sub>2</sub>. The use of pure CF<sub>2</sub> in gas insulated witchgera (GS) and gas circuit breakers (GGB) is difficult because liquid CF<sub>2</sub> in kas induced by high boiling point. We have therefore mixel CF<sub>2</sub> with (Co<sub>2</sub> or N, B) investigating the decomposed gas after a current interruption, we have shown that the iodime density from CF<sub>2</sub>L-C0,349<sup>6,-10</sup>(s) is about 13 of that of pure CF<sub>2</sub>. In addition, no Buorine was detected from the gas mixture. Our investigation of the breakdown voltage characteristics has shown that the didetric its strengt for CF<sub>2</sub>L-C0,349<sup>6,-10</sup>(s) is about 0.75 to 16.80 times that of SF<sub>2</sub>. In Breaker Terminal Fault (BTF) and Short Line Fault (SFF) interruption, CF<sub>2</sub>L-C0, 349<sup>6,-10</sup>(s) is about of CF<sub>2</sub> in the optime (CF<sub>2</sub> is should be small. In BTF interruption, the performance approximates to that of pure CF<sub>2</sub> leven the proportion of CF<sub>2</sub> leveed. 39%. Similarly, the SLP interruption performance approximates to that of pure CF<sub>2</sub> leven the proportion of CF<sub>2</sub> leveed. 39%.

Index Terms - CF3I, Breaker Terminal Fault (BTF), substitute gas for SF6.

#### Miljødirektoratet.no

Gases for Electrical Insulation and Arc Interruption: Possible Present and Future Alternatives to Pure SF\_{6}

L. G. Christophorou J. K. Olinoff D. S. Green Biechroty Division Extension: and Electrical Engineering Laboratory Extension: and Electrical Engineering Laboratory

Chemical Science and Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-0001



#### Breakdown Characteristics of SF<sub>6</sub>/CF<sub>4</sub> Mixtures in Test Chamber and 25.8kV GIS

Shin-Woo Park, Chung-Ho Hwang, Nam- Ryul, Kim, Ki-Taek Lee, and Chang-Su Huh

The constraint of the theorem of the transmission of the transmis

#### MSc: Check! What now?

- A bit of everything, but not a lot of one thing in particular
- Project work: Identifying by-products from a new method of producing aluminium
- Master thesis work: Non-linear laserinduced deformations at liquid-liquid interfaces
- Is this useful in the real world?
- But then, I found a PhD position
- 2011-2015



**D NTNU** Norwegian University of Science and Technology

Nonlinear Laser-induced Deformations and Forces at Liquid-Liquid Interfaces near the critical Point.

#### MSc: Check! What now? (a digression on how small Norway is)



### The challenge of using another gas: Is there something better?

- A lot of gases are more environmentally-friendly than  ${\rm SF_6}$
- But an alternative should also be:
  - A good electric insulator
  - A good electric arc quencher
  - A good heat conductor
  - Stable, non-toxic, non-flammable
  - A gas in the range -40°C +50°C
  - Scalable up to high voltages
  - +++
- If not taking GWP into account:
  - No gas or gas mixture gets as good overall score as SF<sub>6</sub>
- Air: about 30-40% the performance of SF<sub>6</sub>
  - Everything else needs to be optimised

## The challenge of using another gas: Is there something better?

- My PhD work: Investigate design parameters that influence the interruption capability:
  - Nozzle width and length
  - Contact size
  - Over-pressure (and gas flow) vs current
- Experimental work in a single-phase directly powered MV lab in Trondheim
- Not so many females in this field?
  - Have to document it !?





### Finishing a PhD

- Working on a PhD can involve some mixed feelings
- Worked on one topic for many years: But still so much you don't know!
- Feeling of "nothing surprising was uncovered"
- And still: What can this be used for?
- Despite all this: Finishing a PhD is a great feeling!
- And: I was lucky enough to get a job at SINTEF Energy Research, where I could continue with research within my topic!
- (Still lack of females)





### A PhD on current interruption in air, but did you say plus?

- In one of my last PhD project meetings with ABB, they mentioned that they were considering something else than just technical air : P
  - AirPlus: Technical air with a dash of C5-fluoroketone
- From 2014, papers on new synthetic molecules for switchgear were published

2014 Electrical Insulation Conference, Philadelphia, Pennsylvania, USA, 8 to 11 June 2014

#### Investigation of the Insulation Performance of a New Gas Mixture with Extremely Low GWP

J.D. Mantilla, N. Gariboldi, S. Grob, M. Claessens Power Products ABB Switzerland Ltd. CH-8050, Zürich, Switzerland

Abstract— Since several decades  $SF_6$  plays a dominant role for insulation and switching in transmission and distribution equipment due to its superior insulation and arc quenching capabilities. Leakage rates of modern  $SF_6$  switchgear are extremely low and careful handling processes ensure minimum  $SF_6$  emissions during operation. In the past several attempts have been made with different gases and gas mixtures to find alternatives with lower global warming potential, all of them showing severe drawbacks that restricted their implementation.

This paper presents a new gas mixture for insulation with limitations within an acceptable range. Composed of perfluorinated ketones with technical air or  $CO_2$  it shows a comparable insulation capability to  $SF_6$ , where this mixture has a very short atmospheric lifetime with a global warming potential of approximately one and zero ozone depletion potential. Measurements of the dielectric strength of the new mixtures and reference gases are done in a principle test device under homogeneous electrical field conditions over a wide pressure range. Synergistic effects similar to  $SF_6/N_2$  mixtures are observed between the perfluorinated ketones and background gases used. alternative. The most basic approach considers the use of constituent gases of the atmosphere such as  $CO_2$ ,  $N_2$  or technical air [3, 4]. Due to the low relative dielectric strength of these gases, less than a third of that of SF<sub>6</sub>, rather high filling pressures are required to achieve acceptable dielectric withstand levels with SF<sub>6</sub> equipment of comparable size. Mixtures of diluted SF<sub>6</sub> into  $N_2$  are also a subject of investigation [5]. These show an acceptable insulation performance capability with a lower environmental impact at small SF<sub>6</sub>/N<sub>2</sub> ratios. Other approaches address the use of more complex molecules such as c-C<sub>4</sub>F<sub>8</sub> [6] or CF<sub>3</sub>I [7] mixed with a carrier gas like CO<sub>2</sub> or N<sub>2</sub>, showing these, a better dielectric performance than the natural occurring gases.

In this paper, gas mixtures containing PerFluorinated Ketones (PFK) with technical air or  $CO_2$  as a background gas are investigated as a possible environmentally friendly alternative for insulation in high voltage applications. Details of the gases and mixtures investigated are given in section II C. Their AC and lightning impulse (LI) dielectric performance in a homogenous background field is measured and compared to

## Working for SINTEF Energy Research (since April 2015)

- Continued research projects with on MV (and later HV) switchgear
  - On current interruption
  - Short-circuit making
  - Dielectric design
- Building test setups, performing experiments, setting up budgets, writing applications, co-supervising students at NTNU, learning a bit more fluid simulations, writing reports and papers, project managing, presenting research, talking to partners, +++
- Still a lot to learn!



#### So many options!



Figure 3. Molecular model of the two investigated perfluorinated ketones  $C_6F_{12}O$  (left) and  $C_5F_{10}O$  (right)



HFO1234zeE



**Figure 1.** Molecular structure of the Novec<sup>TM</sup> 4710, 2,3,3,3-tetrafluoro-2-(trifluoromethyl) propanenitrile.

#### SF<sub>6</sub> Alternative Development for High Voltage Switchgears

Yannick KIEFFEL, François BIQUEZ, Philippe PONCHON High Voltage Switchgear Research Centre ALSTOM Grid Villeurbanne, France yannick.kieffel@alstom.com

Abstract— The modern transmission and distribution network relies on SF<sub>6</sub> technology because of its remarkable arc quenching properties and dielectric insulation (approximately 3 times greater than air). However, even if SF<sub>6</sub> Switchgears are safe for the environment, the SF<sub>6</sub> insulating gas has potential significant environmental impacts if it leaks into the atmosphere. Indeed SF<sub>6</sub> is one of the six gases listed in the Kyoto Protocol, with a global warming potential that is 23500 times greater than CO<sub>2</sub>.

Alternative solutions to  $SF_6$  have been researched for a long time. Up to now, no significant success has been achieved in solutions for the transmission network. This paper presents the research conducted with fluorinated compounds to qualify a new gas to be used into high voltage equipment as  $SF_6$ alternatives with properties significantly improved with respect to typical  $SF_6/N$ , mixtures or others already in use.

Potential annlications of SF. free as mixture called a<sup>3</sup> and

Todd IRWIN

ALSTOM Grid, Charleroi, PA, USA

Nevertheless, SF<sub>6</sub> has the major drawback of presenting a global warming potential (GWP) of 23500 (relative to  $CO_2$  over 100 years), and it has a lifetime in the atmosphere of 3200 years, thus placing it amongst the gases presenting the most potent greenhouse effect [1]. Therefore, 1kg of SF6 released into the atmosphere has therefore the equivalent global warming impact as 23.5 tons of  $CO_2$ .

SF<sub>6</sub> was thus included by the Kyoto Protocol (1997) in the list of gases for which emissions need to be limited and the best way of limiting emissions of SF<sub>6</sub> consists in limiting the use of said gas, which has led industry to seek alternatives for SF<sub>6</sub>.

#### II. EXISTING ALTERNATIVES

Research was done in past decades on substitutes to  $SF_6$ , covering different candidates including common gases (Nitrogen air CO<sub>2</sub>) perfluorocarbons and vacuum All these

Fig. 5. Schematic diagram of Molecular structure: (a) HFO and (b) Atom involved later.

### My introduction to CIGRE

- 2018: Magne Runde (my PhD supervisor, now my colleague) told me that I should travel to Paris as fast as I could
- Joined WG A3.41 (TB 871)
  - (I think they needed some females here as well)
- Later, became the Norwegian representative for SC A3
- Active in workshops and discussions related to SF<sub>6</sub>alternatives



## Going higher!

- New SF<sub>6</sub>-free switchgear launched every year
- Higher ratings
- More and more manufacturers
- More and more countries
- A lot of fancy names
- A lot of new knowledge to collect and compare
  - Good to have CIGRE!



new eco-efficient gas mixture

ewz Oerlikon substation, Switzerland

World's first gas-insulated switchgear (GIS) installation with

Hitachi Energy to provide world's first SF<sub>6</sub>free 420 kV gas-insulated switchgear technology at TenneT's grid connection in

Germany

#### Press Releases

#### GE Vernova to deliver the world's first 245 kV SF6-free gas-insulated substation for RTF

- France's Réseau de Transport d'Electricité (RTE) will work with Grid Solutions, a GE Vernova busines to implement the world's first 245 kV SF&-free aas-insulated substation (GIS) under the onaoin frame aareement
- This project alians with RTE's commitment to reducing its carbon emissions and upgrading its hig voltage arid infrastructur
- The project will deploy newly launched SFs-free B105 GIS (B105a), developed by GE Vernova's Grid Solutions business with support from the EU's LIEE Program, the European Union's funding instrument for the environment and climate actio
- Instead of SFs, the B105 GIS (B105a) uses a<sup>3</sup> technology, which allows for about 99% reduction CO<sub>2</sub> equivalent of the aas contribution to alobal warming

Paris, FRANCE - August 29, 2024 - GE Vernova ann 's first 245 kilovolt (kV) SEe-free gas-insulated substation

a aas with a alobal warming potential 24.300 times areater than CO2—with its a<sup>3</sup> alternative, a<sup>3</sup> allows for

arbon footprint of transmission infrastructure by using alternatives to SF4, while enabling energy 2 245 kV SFe-free B105 GIS will prevent the addition of approximately 20.000 tons of CO2 equivalent to its high so include Grid Solutions' SFe-free F35g 145 kV, which already benefits from six years of return on experience.

ess, the 245 kV B105 Dual Gas GIS is co-funded by the EU's LIFE Program, the European Union's funding





Norwegian DNO Installs Climate-Friendly GIS Nov 23 2020 E

A green utility in Norway refurbishes a 1965 substation with blue gas-insulated switchgear.



#### 

#### Research projects, at work and at home

- Projects at work: direct projects with partners in Norway and abroad, Norwegian R&D projects, EU projects
- Side topics: Electrification of vessels, Senior safety representative
- At home: Dog training (a lot of research needed!), gardening, forest walks, friends and family



### **Restrictions and possibilities**

- Product development, marked requirements and political regulations still drive changes
- The transition to SF<sub>6</sub>-free is far from over!

| SF <sub>6</sub> -alternatives                     | From a CIGRE<br>colloquium in<br>Birmingham 2023 | Cigre<br>For power system expertise      |  |
|---------------------------------------------------|--------------------------------------------------|------------------------------------------|--|
| Medium voltage (<52 kV)                           | High voltage (>52 kV)                            |                                          |  |
| Switchgear medium<br>(with / without vacuum)      | Interruption medium                              | Electric insulation                      |  |
| N <sub>2</sub> / O <sub>2</sub> (or dry air)      | CO <sub>2</sub> / O <sub>2</sub>                 | CO <sub>2</sub> / O <sub>2</sub>         |  |
| C5-FK / O <sub>2</sub> / N <sub>2</sub>           | C4-FN / CO <sub>2</sub>                          | C4-FN / CO <sub>2</sub>                  |  |
| C4-FN / CO <sub>2</sub>                           | C4-FN / CO <sub>2</sub> / O <sub>2</sub>         | C4-FN / CO <sub>2</sub> / O <sub>2</sub> |  |
| N <sub>2</sub> / O <sub>2</sub> / CO <sub>2</sub> | Vacuum technology                                | N <sub>2</sub> / O <sub>2</sub>          |  |
|                                                   |                                                  | C4-FN / N <sub>2</sub> / O <sub>2</sub>  |  |

- Other alternatives explored during the years, such as HFO-1234ze, C6-FK, and CF<sub>3</sub>I
- Some variations in gas mixing ratios

### SF<sub>6</sub>-alternatives



| Medium voltage (<52 kV)                      | High voltage (>52 kV)   |                                          |  |
|----------------------------------------------|-------------------------|------------------------------------------|--|
| Switchgear medium<br>(with / without vacuum) | Interruption medium     | Electric insulation                      |  |
| $N_2 / O_2$ (or dry air)                     | $CO_2 / O_2$            | $CO_2 / O_2$                             |  |
| $N_2 / CO_2$                                 | C4-FN / CO <sub>2</sub> | C4-FN / $CO_2$                           |  |
| $N_2 / O_2 / CO_2$                           | C4-FN / $CO_2$ / $O_2$  | C4-FN / CO <sub>2</sub> / O <sub>2</sub> |  |
| C4-FN / CO <sub>2</sub> ?                    | Vacuum technology       | $N_2 / O_2$                              |  |
|                                              |                         | C4-FN / N <sub>2</sub> / O <sub>2</sub>  |  |

- Other alternatives explored during the years, such as HFO-1234ze, C5-FK, C6-FK, C3F6O, and CF<sub>3</sub>I
- Some variations in gas mixing ratios

### Agenda: Check!

- A short introduction: Nina
- Growing up in a small town
- Moving to Trondheim
- What now?
- Finishing a PhD
- SINTEF Energy Research
- CIGRE
- Research projects: at work and at home

- A short introduction: SF<sub>6</sub>
- A growing concern
- Moving to alternatives?
- The challenge of using another gas
- Did you say plus?
- Going higher!
- So many options!
- Restrictions and possibilities



#### So: are we switching to something better?

- I believe yes: because all released SF<sub>6</sub> will leave a permanent change in the atmosphere
- Still, the optimisation challenge is not completed yet, so we better keep working
- And, remember yourself in this "chaos":
  - Make sure you actually like your job!
  - Make sure you have something that makes you curious and happy outside work!



# Thank you so much for your attention!

