

Transmission Grid Technical Requirements, Skills, Career Opportunities by 2050

Johan Enslin Program Director, ARPA-E johan.enslin@hq.doe.gov

August 29, 2024

1

- **E** Introduction
- Status of Grid in USA
- Motivation and problem statement
- Need for a Macro DC Grid in USA
- **Exercise Technology Gaps**
- System Operation Challenges
- Skills Needs for the Integrated AC & DC Grid
- Conclusions

ARPA-E Impact Indicators 2024

7,318

peer-reviewed

from ARPA-E

projects

340 projects

have partnered with other government agencies for further development

1111 Ш

1,120 patents issued by U.S. Patent and **Trademark Office**

As of January 2024

There are three distinct (AC) grids in the U.S. Changing what's possible

<https://www.vox.com/energy-and-environment/2018/8/3/17638246/national-energy-grid-renewables-transmission>

Climate crisis is exacerbating reliability concerns and an examing what's possible

Data source: U.S. Energy Information Administration, Annual Electric Power Industry Report

https://www.climate.gov/news-features/blogs/beyond-data/2023-historic-year-us-billion-dollar-weather-and-climate-disasters

Impact: Reliable, Resilient Grid Avoids Outage Costs

Credit: Joe Raedle - Getty Images Credit: Monty Rakusen - Getty Images Credit: KCBD Digital Credit: The University of Texas at Austin

DOE estimates that outages cost the U.S. economy \$150 billion annually!

- 8+ hours/customer/year without power
- 500K people affected daily
- Weather-related outages cost up to \$70 billion per year

- [Department of Energy Report Explores U.S. Advanced Small Modular Reactors to Boost Grid Resiliency | Department of Energy](https://www.energy.gov/ne/articles/department-energy-report-explores-us-advanced-small-modular-reactors-boost-grid)
- <https://www.bloomenergy.com/blog/a-day-without-power-outage-costs-for-businesses>
- <https://www.economist.com/graphic-detail/2021/03/01/power-outages-like-the-one-in-texas-are-becoming-more-common-in-america>

Energy Pricing Driven Motivation

Extreme Weather Events

Ref: Platts Market Data 3.0. Real-Time Locational Marginal Pricing [Data set]. S&P Global Market Intelligence. Accessed April 23, 2023

- The extent of the energy shortage in SPP with LMPs in excess of \$1,000/MWh for 3 days and at one point exceeding \$4,000/MWh
- During that time, PJM and MISO markets were \bullet not generally impacted by Uri, and the LMPs reflect that during that time period
- "Grid Strategies LLC. "Transmission Makes the \bullet Power System More Resilient to Extreme Weather," American Council on Renewable *Energy. July 2021"* found that an increase in 1GW of transfer capacity between ERCOT and the southeast during Winter Storm Uri would have saved \$1 billion

Substantial Load Growth in the Coming Decades

- > 3x Electrical load growth by 2050 (3-4 TW)
	- Data centers expansion & electrification of transportation
- \$25+ billion in annual U.S. transmission investments
	- Interconnecting Queues drastically increased
- **Weather causes 40% to 65% of all outages** $-$ **\$ 150 B p.a.**
	- Each 1h downtime costs large manufacturers \$ 5 M
- Net-zero carbon goals by 2050 2.6 TW New Generation **waits in the queue to interconnect**

Our Grandparents' Grid CHANGING WHAT'S POSSIBLE

Our Grid (patching up our Grandparents') and a subsequently changing what's possible

We Have Been "Patching" the Existing Grid

db-11

Renewables and IBR Impacts on the Grid Campany Changing What's Possible

• **Intermittency**

• Develop baseload renewables

- **Inverter-based Resources (IBRs)**
	- Interconnection Standards
	- Protection Coordination
	- Replacing inertia
	- Grid-forming v/s Grid-following
	- EMI and Reliability
- **Resiliency Impact**
	- Interface inertia mismatch
	- Grid stability issues
	- Degrades traditional transformer reliability

vs

Transformer Winding Insulation Failure

EXEC Distributed mixed generation (and storage)

- **Prosumers and Active Loads**
- **E** Microgrids

A Macro Super-Highway Grid is Needed!

How may the MacroGrid architecture evolve?

Why HVDC vs HVAC in Cables and Lines?

CHANGING WHAT'S POSSIBLE

What is HVDC and Why is it an Important Solution

17

■ Controlled bidirectional power flow

Advantages of HVDC:

- Release capacity on AC networks
	- **EXEC** Post of bulk renewable integration
- Remote renewable energy integration
- Underground (cable) friendly
- **EX Connect asynchronous grids**

Why HVDC vs HVAC in Cables and Lines?

18

■ 3x power transfer on same infrastructure ■ 3x power transfer on same *Right of Way*

[https://www.eia.gov/analysis/studies/electricity/hvdctransmission/pdf/transmission.pdf,](https://www.eia.gov/analysis/studies/electricity/hvdctransmission/pdf/transmission.pdf) <https://www.pnas.org/doi/epdf/10.1073/pnas.1905656116> Juan, P., Novoa., Mario, A., Rios. (2017). Conversion of HVAC Lines into HVDC in Transmission Expansion Planning. International Journal of Energy and Power Engineering

Materials/Cost Saving for Underground Cables

Example for **345 kV, 2000 A** cable transmission (**1GW**) per mile Density - Cu: 8,960 kg/m³, Al: density 2,700 kg/m³; Current density - Cu: 1 A/mm²[, Al: 0.7 A/mm](https://www.nkt.com/news-press-releases/nkt-cables-markets-the-world-s-most-powerful-underground-dc-cable-system-640kv)²

HVAC HVDC

Cu conductor 9.6 m^3 86 metric tons or

Al conductor 13.7 $m³$ 37 metric tons **Cu** conductor 1.4 m^3 12.2 metric tons or

Al conductor 2.4 m^3 6.4 metric tons

Savings:

Cu: 74 metric tons (\$740k)/mile

Al: 31 metric tons (\$76k)/mile

CHANGING WHAT'S POSSIBLE

U.S. Tx Lines ≥345 kV AC may be Converted to HVDC CHANGING WHAT'S POSSIBLE

For 160 GW Offshore Wind, a \$45B reduction in upgrades if HVDC MacroGrid is used! Jim McCalley, Iowa-State, IEEE PES-24 **²¹**

<https://atlas.eia.gov/apps/electricity/explore> *Red HVDC lines are illustrative only as an example

From HVDC Links to a Macro DC Grid

What is Missing (Technology and Skills Gaps)?

CHANGING WHAT'S POSSIBLE

- **Fast Track Transmission Buildout by 2050**
- **Europe and Asia surpassed the U.S. with HVDC over a decade:**
	- Limited innovations in the HVDC technology New topologies; HF
	- MTDC converter cost (\$0.2 1 billion/GW) Plan reduction
	- Air is electric isolation New HV dielectrics > size reduction
	- No Operations of DC Grid Integrated AC & DC operations
	- **Transmission permitting takes decades Use existing infrastructure**

DC Enables Fully Imperceptible Infrastructure CHANGING WHAT'S POSSIBLE

New Multi-Terminal HVDC Converter Station Design

25

Example:

Dysinger switchyard, Royalton, NY 345 kV, 3,700 MW

GE VSC HVDC Station design blueprint (N/A location) ± 525 kV, 2 x 2,000 MW

Substation area: ≈**110,000 m³**

[The 345-kV Empire State Transmission Line is now complete \(power-grid.com\)](https://www.power-grid.com/td/transmission/the-345-kv-empire-state-transmission-line-is-now-complete/)

[arpa-e.energy.gov/sites/default/files/Marek Furyk.pdf](https://arpa-e.energy.gov/sites/default/files/Marek%20Furyk.pdf)

Hybrid AC & DC Grid Operation ... timescales SAMPLY CHANGING WHAT'S POSSIBLE

ACE: Area Control Error; AGC: Automatic Generation Control. Frequency/Active power control ²⁷

Conventional Synchronous Generator Structure

Grid - Frequency Stability

Directly affected by generation-demand balance

New Power Electronic Building Blocks for HVDC submodules

CHANGING WHAT'S POSSIBLE

30

New Multi-Terminal HVDC Converter Station Design

31

Trans Bay On-shore HVDC Station (2010) Dolwin-3 Off-shore HVDC Station (2017)

Multi-Terminal HVDC Converter Station Design

Converter Stations Deliverables:

Critical Station Equipment Design

- 3X smaller, modular substation design
	- Insulation, capacitors, transformers, filters, switchgear, converter design

CHANGING WHAT'S POSSIBLE

!!!!!!!!

- 500 625 kV / 4 GW Multi-Vendor standard
- Availability > 99%

…

System-Level Operations of DC MacroGrid with AC Grid

MTDC Studies for HVDC

- ‣ CIGRE released 7 DC Grid Benchmark Models (BM):
	- 1. HVDC grid model for the integration of large scale onshore renewable generation
	- 2. ±800 kV Line Commutated Converter (LCC) HVDC grid model
	- 3. MTDC system model for integration of small onshore renewables
	- 4. HVDC grid model for offshore wind platform connection
	- 5. LCC/VSC hybrid HVDC grid model
	- 6. HVDC grid model for parallel interconnection of two AC power systems
	- 7. Large comprehensive HVDC grid model
- ‣ BMs will enable comparative studies on stability, node interactions, and system benefits of various technologies and control and protection strategies.
- ‣ Models published in: PSCAD, EMTP, DigSilent, RTDS and Opal-RT.
- ‣ New Tools are needed for EMT modeling and operations.

BM4: HVDC grid for offshore system integration wind generation and offshore platform loads

<https://electra.cigre.org/311-august-2020/technical-brochures/dc-grid-benchmark-models-for-system-studies.html> 34

Can AI open the door?

Interconnect studies

Credits: Window Spotlight Images TESLA 512th Airlift Wing

Summary of Skills Required

- High power electronics and converter technology
- Integrated heat transfer and high voltage dielectric technology
- System modeling algorithms and tools
- **EXTERF High voltage, high power labs and testing expertise**
- P-HIL and HPC software and hardware development
- ML hardware and algorithm development
- Role and challenges using AI?
- Integrated systems operations
- Business models for the utility of the future
- Regulatory and energy policy development

