Power transformer diagnostics and DC bias in transformers

Dennis Albert – A2 Power Transformers and Reactors
Webinar – 2024-06-26
Power Transformers

- Transformer Digital Twin
- Transformer Modelling
- State-of-the-Art Diagnostics
- Advances Diagnostics
State-of-the Art in Transformer Diagnostics
Diagnostics – Why?

CIGRE WG A2.37: Transformer failure statistics

- 22,000 grid transformers
- 150,000 service years

Source: DEVELOPMENT AND RESULTS OF A WORLDWIDE TRANSFORMER RELIABILITY SURVEY” CIGRE SC A2 COLLOQUIUM 2015, Shanghai
Diagnostics – Why?
State-of-the-Art Diagnostics

- Bushings
- On-Load Tap Changer (OLTC)
- Core
- Windings
- Leads
- CTs
- (Liquid) Insulation
- CTs
State-of-the-Art Diagnostics

- **OFFLINE** tests: transformer de-energized
 - Conventional: turns ratio, winding resistance, short-circuit impedance
 - Capacitance & loss factor: C & dissipation/power factor (DF/PF)
 - Dielectric response: frequency domain spectroscopy (FDS) & PDC
 - Frequency response analysis: FRA
 - Partial Discharge (PD)
 - Dissolved Oil-in Gas Analysis (DGA)
 - Dynamic resistance measurement (DRM)
 - ...

- **ONLINE** tests: transformer in operation
 - temperature monitoring
 - Online-DGA
 - Partial Discharge
 - $\tan(\delta)/C$ on bushings
 - ...

CIGRE Logo

For power system expertise
<table>
<thead>
<tr>
<th>Component</th>
<th>Detectable faults</th>
<th>Possible measurement methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bushings</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Partial breakdown between capacitive graded layers, cracks in resin-bonded insulation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aging and moisture ingress</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Open or compromised measuring tap connection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Partial discharges in insulation</td>
<td></td>
</tr>
<tr>
<td>CTS</td>
<td>Current ratio or phase error considering burden, excessive residual magnetism, non-compliance to relevant IEEE or IEC standard</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Burden-dependent current ratio and phase displacement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shorted turns</td>
<td></td>
</tr>
<tr>
<td>Leads</td>
<td>Contact problems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mechanical deformation</td>
<td></td>
</tr>
<tr>
<td>Tap changer</td>
<td>Contact problems in tap selector and at diverter switch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Open circuit, shorted turns, or high resistance connections in the OLTC preventative autotransformer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contact problems in the DETC</td>
<td></td>
</tr>
<tr>
<td>Insulation</td>
<td>Moisture in solid insulation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aging, moisture, contamination of insulation fluids</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Partial discharges</td>
<td></td>
</tr>
<tr>
<td>Windings</td>
<td>Short-circuits between windings or between turns</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strand-to-strand short-circuits</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Open circuits in parallel strands</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Short-circuit to ground</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mechanical deformation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contact problems, open circuits</td>
<td></td>
</tr>
<tr>
<td>Core</td>
<td>Mechanical deformation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Floating core ground</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shorted core laminates</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Residual magnetism</td>
<td></td>
</tr>
</tbody>
</table>

State-of-the-Art Diagnostics
State-of-the-Art Diagnostics | Excitation Current

- no-load current measurement with low voltage during turns ratio test or with 10 kV
- sensitive to remanence
- Detect: shorted core laminations, shorted turns, OLTC issues
State-of-the-Art Diagnostics | Excitation Current

Example

- Vector group: Yzn5
- TTR test passed

![Fingerprint 3-phase TTR 120 VAC](image1)

![Comparison of fingerprint with shorted turns](image2)

<table>
<thead>
<tr>
<th>Phase</th>
<th>Exciting Current [mA]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>12.598 mA</td>
</tr>
<tr>
<td>B</td>
<td>9.169 mA</td>
</tr>
<tr>
<td>C</td>
<td>14.445 mA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Phase</th>
<th>Exciting Current [mA]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>158.756 mA</td>
</tr>
<tr>
<td>B</td>
<td>146.202 mA</td>
</tr>
<tr>
<td>C</td>
<td>304.773 mA</td>
</tr>
</tbody>
</table>
State-of-the-Art Diagnostics | Leakage Impedance

- leakage reactance or short-circuit test between two windings
- no coupling between the windings via core, only via air/oil gap
 ✓ assessment of the air/oil gap channel

![Diagram of a transformer with leakage impedance components](image)

Winding deformation (buckling) causing a change of leakage flux
State-of-the-Art Diagnostics | Leakage Reactance
Case Study

- 30 MVA YNyn6, 115 kV/34.5 kV transformer
- The transformer tripped out of service on a differential relay
 - DGA: hot spot involving cellulose

Three-phase test

<table>
<thead>
<tr>
<th></th>
<th>I AC (A)</th>
<th>V AC (V)</th>
<th>Zk (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase A</td>
<td>1.100</td>
<td>67</td>
<td>61.04</td>
</tr>
<tr>
<td>Phase B</td>
<td>1.097</td>
<td>66</td>
<td>60.75</td>
</tr>
<tr>
<td>Phase C</td>
<td>1.115</td>
<td>64</td>
<td>57.77</td>
</tr>
</tbody>
</table>

Relative Z_k = 6.79%

Nameplate Z_k = 6.60%

Deviation = -2.85%

Per-phase test

<table>
<thead>
<tr>
<th></th>
<th>I AC (A)</th>
<th>V AC (V)</th>
<th>Zk (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase A</td>
<td>1.00</td>
<td>29.1</td>
<td>29.11</td>
</tr>
<tr>
<td>Phase B</td>
<td>1.00</td>
<td>31.9</td>
<td>31.89</td>
</tr>
<tr>
<td>Phase C</td>
<td>0.99</td>
<td>28.8</td>
<td>28.81</td>
</tr>
</tbody>
</table>

Max. Deviation = ~10%
State-of-the-Art Diagnostics | Leakage Reactance

Case Study

Bulge on LV winding of Phase B
State-of-the-Art Diagnostics | Demagnetization

- several measurements/tests are sensitive to remanence
- Remanence increase inrush and mechanical force on reinforcements
- Methods for demagnetization:
 - heat up above Curie temperature
 - strong vibration force on the core
 - allying an opposing magnetic field

Grain oriented electrical steel sample placed inside an electromagnet. Magneto-optical images recorded with the CMOS-MagView; Source: Matesy GmbH
State-of-the-Art Diagnostics | Demagnetization
Power Transformers

- Transformer Digital Twin
- State-of-the-Art Diagnostics
- Transformer Modelling
- Advances Diagnostics
Advanced Diagnostics | Frequency Response of Stray Losses

- **Frequency Response of Stray Losses**
- frequency weep: 15 Hz – 490 Hz
- carried out per phase

- Shorted strands result in higher losses, particularly visible at higher frequencies
- Eddy losses are frequency dependent
- Such faults are not detectable by transformer ratio or winding resistance tests
Advanced Diagnostics | Frequency Response of Stray Losses

- Used to detect shorted parallel strands of continuously transposed conductors (CTC)
- CTC’s are used in transformers with higher power rating to reduce losses caused by skin effect and eddy currents
Assessment of FRSL measurements:

- Phase-to-phase comparison* or fingerprint
- $\Delta R_{\text{max}} = 15\%$
- $\Delta L_{\text{max}} = 2.5\%$

* CIGRE TB455, Guide for Transformer Maintenance, 2011
Advanced Diagnostics | Frequency Response of Stray Losses

- Case Study
 - 40 MVA Yd, 121 kV/12.85 kV transformer
 - Measurement triggered by gassing, indicating a hot spot
 - No other electrical standard test showed a fault

![Graph showing resistance vs. frequency for the 40-MVA transformer](image)
Advanced Diagnostics | Frequency Response Analysis

- **IFRA impulse FRA:**
 - derive frequency from a Fourier transformer of an impulse

- **SFRA sweep FRA**
 - use sinusoidal signal with variable frequency
Advanced Diagnostics | Frequency Response Analysis

Low pass

Band pass

High pass

Band stop
Advanced Diagnostics | Frequency Response Analysis

- frequency weep: 20 Hz – 2 MHz
- voltage amplitude: 10 V_{pp}
- 4 different tests
 - end-to-end open circuit
 - end-to-end short-circuit
 - end-to-end capacitive
 - end-to-end inductive
- detect mechanical deformations
- Fingerprint method
- Sister unit comparison & phase comparison can be used with caution
Advanced Diagnostics | Moisture Analysis

- **Moisture in transformers:**
 - reduced PD inception voltage
 - reduced breakdown voltage
 - bubble evolution from wet paper
 - Accelerated aging of cellulose due to depolymerization by hydrolysis

- more water in cellulose than in oil
 - temperature increase causes release of water from cellulose into oil
 - 150 MVA, 7 t cellulose, 70 t mineral oil, 20° C, 3%wt. → **210 kg water**
Advanced Diagnostics | Moisture Analysis

- **dielectric spectroscopy**
 - ✓ capacitance & \(\tan(\delta) \)
 - ✓ frequency range: 10 µHz – 5 kHz @ 200 \(V_{\text{peak}} \)

- **moisture analysis**
 - ✓ comparing measurement data with a database
 - ✓ model curve close to measurement curve with help of oil conductivity and geometry data

According to IEC 60422.
Advanced Diagnostics | Moisture Analysis

- **moisture analysis**
 - comparing measurement data with a database
 - model curve close to measurement curve with help of oil conductivity and geometry data

![Diagram showing moisture analysis process](image.png)
Advanced Diagnostics | Capacitance & Power Factor

- e.g. two windings create a capacitance together with the insulation
- capacitances can be measured from terminals (include bushings!)

![Diagram of capacitance measurement](image-url)
Dissipation Factor & Power Factor

- $\tan \delta = \frac{I_R}{I_C}$
- $\cos \phi = \frac{I_R}{I_{\text{test}}}$
Advanced Diagnostics | Capacitance & Power Factor

<table>
<thead>
<tr>
<th>Capacitance</th>
<th>Windings</th>
<th>Transformer core</th>
<th>Dissipation / Power factor (DF/PF)</th>
<th>Insulation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>o Short circuit to ground</td>
<td>o Mechanical deformation</td>
<td>o Mechanical deformation</td>
<td>o Moisture in solid insulation</td>
</tr>
<tr>
<td></td>
<td>o Mechanical deformation</td>
<td>o Change of the geometry between winding</td>
<td>o Floating core to ground</td>
<td>o Ageing products, moisture, contamination of insulation fluids</td>
</tr>
<tr>
<td></td>
<td>o Displacement</td>
<td>o Change of the geometry between winding</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Image: CIGRE logo]
Advanced Diagnostics | Capacitance & Power Factor

Case Study: 220 kV Bushing stored outside

![Graph showing dissipation and power factor over different frequencies and time periods after removing from TR, 3 months and 6 months after removing]
Advanced Diagnostics | PD Measurement

- on dry-type transformers with cast-resin insulation are available exceeding 50 kV
- DF/PF has very limited use for dry-type transformers, due to the leakage currents on the insulation surface.
- Reliable diagnostic measurement so far: partial discharge (PD) measurement
- Induced voltage (IVPD) test at higher frequencies (mitigate saturation)
- Single-phase excitation with mobile test equipment
Advanced Diagnostics | PD Measurement

Measurement Setup

- Induced Voltage Test with Partial Discharge Measurement (IVPD)
 - ✔ factory: 3-phase
 - ✔ on-site: 1-phase
- Advantage of IVPD: stress turn-to-turn insulation
 - ✔ caution: not over stress line-to-ground insulation

\[1.05 \cdot U_R = 242 \text{ V}_{L-N}\]

23.57 kV_{L-N} | rated: 13.6 kV_{L-N}
Advanced Diagnostics | PD Measurement

Measurement Setup

- **Advantage of IVPD:** stress turn-to-turn insulation
 - **CAUTION:** not overstress line-to-ground insulation
 - **Best practice:** use other two coils as voltage dividers

\[1.3 \cdot U_R = 300 \, V_{L-N} \]

\[14.64 \, kV_{L-N} \mid \text{rated: } 13.6 \, kV_{L-N} \]

(Engstler et al. 2024)
Power Transformers

- Transformer Digital Twin
- State-of-the-Art Diagnostics
- Transformer Modelling
- Advances Diagnostics
Transformer Modelling | Motivation

- **Origin of DC in the power grid**
 - power electronics (e.g. HVDC, STATCOM, Inverters)
 - geomagnetically induced currents (GICs)
 - corrosion protection systems
 - DC-powered public transportation system

- **Effects of DC on transformers**
 - increased sound
 - increased losses → heating

- **Mitigation of DC**
 - consider DC during the design stage
 - DC blocker in the transformer neutral
 - DC flux compensation system
Transformer Modelling | Motivation

- Origin of DC in the power grid
 - power electronics (e.g. HVDC, STATCOM, Inverters)
 - geomagnetically induced currents (GICs)
 - corrosion protection systems
 - DC-powered public transportation system

- Effects of DC on transformers
 - increased sound 🔊
 - increased losses → heating

- Mitigation of DC
 - consider DC during the design stage
 - DC blocker in the transformer neutral
 - DC flux compensation system
Transformer Modelling | Model Overview (I)

<table>
<thead>
<tr>
<th>Types</th>
<th>Physical-based</th>
<th>Data-based</th>
<th>Hybrid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal</td>
<td></td>
<td>Machine Learning</td>
<td>physics-informed neural network (PINN)</td>
</tr>
<tr>
<td>Electromagnetic</td>
<td></td>
<td>Rule-based Systems</td>
<td>proper orthogonal decomposition (POD) method with finite element (FE)</td>
</tr>
<tr>
<td>Mechanical</td>
<td></td>
<td>Evolutionary Algorithms</td>
<td></td>
</tr>
<tr>
<td>Dielectric</td>
<td></td>
<td>Knowledge Graphs</td>
<td></td>
</tr>
<tr>
<td>Sound</td>
<td></td>
<td>Fuzzy Logic</td>
<td>artificial neural network (ANN)</td>
</tr>
<tr>
<td>Multi-physical</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Usage

- **Internal/external (over-) voltages**
- **Network studies**
- **Design optimization**
- **Lifespan forecasting**
- **Maintenance** (condition-based, predictive, replacement planning)
- **Risk Assessment**
- **Load Forecasting**
- **Fault Diagnostic**
- **Condition Assessment**
- **Load Forecasting**
- **Increasing robustness**
Transformer Modelling | Physical-based Models

<table>
<thead>
<tr>
<th>Model Type</th>
<th>Frequency Range</th>
<th>Application</th>
<th>Required Information</th>
<th>Simulation Time & Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEM</td>
<td>Design Study</td>
<td>Design data (high)</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>White Box</td>
<td>500-800 kHz</td>
<td>System interaction & internal overvoltage's</td>
<td>Design data (medium)</td>
<td>High</td>
</tr>
<tr>
<td>Grey Box</td>
<td>DC-500 kHz</td>
<td>System interaction</td>
<td>Design data (low) & Measurements</td>
<td>Small/High</td>
</tr>
<tr>
<td>Black Box</td>
<td>< 2 MHz</td>
<td>System interaction</td>
<td>Measurements</td>
<td>Small</td>
</tr>
</tbody>
</table>

Transient Phenomena

<table>
<thead>
<tr>
<th>Transient Phenomena</th>
<th>Slow</th>
<th>Switching</th>
<th>Fast</th>
<th>Very Fast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Range</td>
<td>DC – 1 kHz</td>
<td>50/60 Hz – 10 kHz</td>
<td>10 kHz – 1 MHz</td>
<td>100 kHz – 50 MHz</td>
</tr>
</tbody>
</table>
Transformer Modelling | Grey-Box Models

- **Model components**: only common components (inductor, resistor, capacitor, ideal transformer,...)
- **Model structure**: derived with the principle of duality between magnetic and electric circuits
Transformer Modelling | Model Structure
Transformer Modelling | DC Hysteresis Test

AC Saturation Test

DC Hysteresis Test
Transformer Modelling | Model Optimization

-30 -20 -10 0 10 20 30

current in A

-8
-6
-4
-2
0
2
4
6
8

in Vs

T3Sa DC Hys
T3Sa AC Sat

-0.5 0 0.5

-5
0
5
10

-3

-50
0
50

voltage in V

time in s

0 20 40 60 80 100 120

-15
-10
-5
0
5
10

15

50

current in A

0 20 40 60 80 100 120

-50
0
50

-15
-10
-5
0
5
10

15

voltage in V

time in s

-30 -20 -10 0 10 20 30

current in A

-8
-6
-4
-2
0
2
4
6
8

X 10^-3

-5
0
5
10

X 10^-3

-0.5 0 0.5

5

0

-5

T3Sa DC Hys
T3Sa AC Sat

cigre

For power system expertise
Transformer Modelling | Use-Case 50 kVA Transformer

<table>
<thead>
<tr>
<th></th>
<th>Calc.</th>
<th>Dev. in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>S in VA</td>
<td>650.8</td>
<td>0.01</td>
</tr>
<tr>
<td>P in W</td>
<td>165.7</td>
<td>-7.07</td>
</tr>
</tbody>
</table>
Transformer Modelling | Use-Case 786 MVA Transformer

<table>
<thead>
<tr>
<th></th>
<th>Calc.</th>
<th>Dev. in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>S in kVA</td>
<td>231.3</td>
<td>+24.8</td>
</tr>
<tr>
<td>P in kW</td>
<td>186.5</td>
<td>+12.6</td>
</tr>
</tbody>
</table>
Transformer Modelling | Use-Case 786 kVA Transformer

Saturation Curve vs. Hysteresis Model
Power Transformers

- Transformer Digital Twin
- State-of-the-Art Diagnostics
- Transformer Modelling
- Advances Diagnostics
Transformer Digital Twin

- **Definition**
 - virtual dynamic representation of a physical artefact or system
 - automized bidirectional data exchange between the digital twin and physical asset
 - twin entails data of all phases of the entire product lifecycle

- JGW A2/D2.65 – Evaluate state-of-the art
- VDE Working Group for Digital Twins in energy sector in general

Credit: CIGRE WG A2/D2.65 Transformer Digital Twin
Transformer Digital Twin | Realization & Aspects

- **Sensors**: DGA, busing tap, vibration, partial discharge, voltage, current,...

- **Data Acquisition**: data integrity, store, pre-process, data quality,...

- **Communication Infrastructure**: robust, near real-time

- **Modelling, Simulation, Data Analytics**: validation, update models, algorithms

- **Visualization & User Interface**: comprehensive, charts, dashboard, alarms, actions
Transformer Digital Twin | Model Types

- Physics-based models
 - electromagnetic
 - mechanic
 - thermal
 - dielectric & degradation

- Data-driven models
 - artificial intelligence based for complex situations

- Hybrid models combining data-driven and physics-based models
Transformer Digital Twin | Applications & Bottle Necks

- Anomaly detection
- Diagnosis
- Prognosis
- Predictive maintenance

- Standardization of interfaces/data exchange
- Data quality validation

Credits: www.byjusfutureschool.com
Let’s sum up...

- **Diagnostics**
 - **Standard Tests:** Excitation, Leakage, Demagnetization
 - **Advance Tests:** FRSL, SFRA, Moisture, C/PF, IVPD

- **Transformer electromagnetic modelling**
 - Transformer no-load current calculation requires hysteresis models to accurately reproduce the (measured) line currents
 - Modelling approach inherently in cooperates uncertainties by the optimization of the hysteresis model parameters

- **Transformer Digital Twin**
 - Standardization required
 - Data validation and quality
Thanks for listening ;)

Dennis Albert | dennis.albert@omicronenergy.com
Webinar – 2024-06-26
Literature

(Engstler et al. 2024) Engstler, B., Engelen, C., Application Note: Diagnostic of MW Transformers, OMICRON electronics GmbH, 2024

(IEC 2018) IEC, 60076-11, Power Transformers Part 11: Dry-type transformers, 2018

Copyright © 2021

This tutorial has been prepared based upon the work of CIGRE and its Working Groups. If it is used in total or in part, proper reference and credit should be given to CIGRE.

Disclaimer notice

“CIGRE gives no warranty or assurance about the contents of this publication, nor does it accept any responsibility, as to the accuracy or exhaustiveness of the information. All implied warranties and conditions are excluded to the maximum extent permitted by law”.