

Pipeline Considerations for New and Repurposed Pipelines:

Conversion for Pure H₂ Pipelines and Blended NG/H₂ Pipelines

Speaker: Andrew López

Company: Burns & McDonnell

Summary

- ► Guidance for introducing hydrogen into pipelines
- ► ASME B31.12-2019 & ASME B31.8-2022 for hydrogen systems
- Inspection, testing, and anomalies
- Wall thickness determination and MAOP

Is this guy at the wrong conference?

Relevant Code

- ► ASME B31.8-2022 for hydrogen in hydrocarbon mixtures
 - No upper limit in code, but pure H₂ excluded in scope
 - ASME B31.8 is incorporated by reference in 49 CFR Part 192 [1]
- ► ASME B31.12-2019 for pure hydrogen
 - Minimum 10% hydrogen
 - More conservative calculations
- ► Clarifications on code scope within ASME B31 Committee

Conversion of Existing Pipelines

- ► Behavior of blended hydrogen systems
- Hydrogen-induced damage factors

Blended Hydrogen Systems

- Safety evidence for up to 25% hydrogen*
- Grades suitable for blended hydrogen
- Anomaly identification through smart pigging

SYNTHETIC NATURAL GAS

Pure Hydrogen Systems

- Hydrogen embrittlement/attack
- Inspection and anomaly records
- ► All threaded and flanged connections should be inspected for potential leaks.
- Existing or historic pipeline defects that can be embrittled by H2
 - Axial cracks
 - Circumferential cracks
 - Internal surface-breaking defects
 - Pipe seam defects, e.g., hook cracks and lack of weld seam fusion
 - Hard spots
 - Welds with defects or high hardness

Material Specifications & Selection

- Metallurgical reactions with hydrogen
- Lower-grade materials for prevention
- Piping material performance factor (Mf)
- Pipeline material performance factor (Hf)

Table IX-5B Carbon Steel Piping Materials Performance Factor, M_f

Specified Min. Stre	ngth, ksi			System Design	Pressure, psig		
Tensile	Yield	≤1,000	2,000	3,000	4,000	5,000	6,000
70 and under	≤52	1.0	0.948	0.912	0.884	0.860	0.839
Over 70 through 75	≤56	0.930	0.881	0.848	0.824	0.800	0.778
Over 75 through 80	≤65	0.839	0.796	0.766	0.745	0.724	0.706
Over 80 through 90	≤80	0.715	0.678	0.645	0.633	0.618	0.600

Specified Min. Stree	System Design Pressure, psig							
Tensile	Yield	≤1,000	2,000	2,200	2,400	2,600	2,800	3,000
66 and under	≤52	1.0	1.0	0.954	0.910	0.880	0.840	0.780
Over 66 through 75	≤60	0.874	0.874	0.834	0.796	0.770	0.734	0.682
Over 75 through 82	≤70	0.776	0.776	0.742	0.706	0.684	0.652	0.606
Over 82 through 90	≤80	0.694	0.694	0.662	0.632	0.610	0.584	0.542

Table PL-3.7.1-2 Basic Design Factor, F
(Used With Option B)

	•
Location Class	Design Factor, F
Location Class 1, Division 2	0.72
Location Class 2	0.60
Location Class 3	0.50
Location Class 4	0.40

Table PL-3.7.1-3 Temperature Derating Factor, T, for Steel Pipe

	Temperature, °F	Temperature Derating Factor, <i>T</i>	
	250 or less	1.000	
	300	0.967	
	350	0.933	
	400	0.900	
_	450	0.867	

GENERAL NOTE: For intermediate temperatures, interpolate for derating factor.

Example Calculations

- ► Wall thickness calculations for various grades
- ► ASME B31.12 vs. ASME B31.8
 - B31.12 has separate calculations for piping and pipelines

Table 1 - B31.12 Wall Thickness for 42" Piping @ 1400 psig up to 300 °F

Grade	Wall
	Thickness
X42	1.535"
X52	1.399"
X56	1.397"
X60	1.456"
X65	1.426"
X70	1.571"
X80	1.434"

Grade	Wall
	Thickness
X42	2.195"
X52	2.014"
X56	2.127"
X60	2.027"
X65	2.200"
X70	2.084"
X80	2.117"

Grade	Wall
	Thickness
X42	1.167"
X52	0.9423"
X56	0.875"
X60	0.817"
X65	0.754"
X70	0.700"
X80	0.613"

Calculations, continued

- ► Wall thickness calculations for various grades
- ► ASME B31.12 vs. ASME B31.8
 - B31.12 has separate calculations for piping and pipelines

Table 2 - B31.12 Wall Thickness for 30" Piping @ 1400 psig up to 300 °F

Grade	Wall
	Thickness
X42	1.096"
X52	0.999"
X56	0.998"
X60	1.046"
X65	1.019"
X70	1.122"
X80	1.024"

Table 4 - B31.12 Wall Thickness for 30" Pipeline @ 1400 psig up to 300 °F

Grade	Wall
	Thickness
X42	1.568"
X52	1.439"
X56	1.519"
X60	1.448"
X65	1.572"
X70	1.489"
X80	1.512"

Table 6 - B31.8 Wall Thickness for 30" Pipe @ 1400 psig up to 300 °F

Grade	Wall
	Thickness
X42	0.834"
X52	0.674"
X56	0.625"
X60	0.584"
X65	0.539"
X70	0.500"
X80	0.438"

Seriously? More...

► Repurposing a 1400 psig Natural Gas line

Table 6 - B31.8 Wall Thickness for 30" Pipe @ 1400 psig up to 300 °F

Grade Wall Thickness 0.834" X42 430 psig X52 0.674" X56 0.625" X60 0.584" X65 0.539" X70 0.500" X80 0.438"

Table 5 - B31.8 Wall Thickness for 42" Pipe @ 1400 psig up to 300 °F

Grade	Wall	
	Thickness	
X42	1.167"	
X52	0.9423"	 430 psig
X56	0.875"	1 0
X60	0.817"	
X65	0.754"	
X70	0.700"	
X80	0.613"	

Conclusion

- ▶ Blending hydrogen in existing pipelines up to 25%
- Analysis for pure hydrogen conversion
- Considerations for new hydrogen pipelines
- Keywords
 - Hydrogen Pipelines
 - Blended Natural Gas
 - Net Zero Carbon Economy

Q&A

