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Why Neural Dynamic Equivalence?

qNo access to the external system

qStatic equivalent model (inaccurate)

qUnexploited data (SCADA and PMU)

Motivations

External 
System
Unidentified?

Neural Dynamic Equivalence
q Harvest from big data

q ODE-NET: continuous differential structure

q Update in real-time via PMU measurements

Our solution

Nonlinear
Unforeseeable mode

https://openinframap.org/#8.13/40.838/-74.149

Internal System
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Why is Neural Dynamic Equivalence difficult?
Challenges

qLearn from data but need to align with physics

qContinuous dynamics but discrete measurements

Discretize 𝑥, then compare 
with the derivatives �̇�

Integrate �̇�, then compare 
with the 𝑥

Discrete learning Continuous learning

Curve-fitting

(a) Open-loop training performance 
Figure 1 Comparison of NeuDyE with conventional discrete-time DNN

(b) Closed-loop testing performance
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How to implement Neural Dynamic Equivalence?

Figure 2 PI-NeuDyE continuous learning

( , )x x uq=! N

Our solution: Neural ODE-Net
qContinuous-time space model 

qPhysics-informed training

qGuaranteed closed-loop accuracy
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Result of Physics-Informed Dynamic Equivalence

Figure 4 Closed-loop tests with fault clears at 0.56s at bus 19

Figure 3 Accuracy of PI-NeuDyE under 108 cases

Figure 2 Topology of the NPCC system 

q High accuracy: <1% overall relative error

q High adaptability: various fault scenarios

q High generalization ability: new case

Physics-Aware Neural Dynamic Equivalence of Power Systems, Q. Shen, Y. Zhou
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Practical application of Dynamic Equivalence

Fault

Internal 
System InSys

External 
System ExSys 

Vp

itie

pv

q Norton equivalent theory (boundary voltages )

q Algebraic component separation

q Strengthening ODE-NET via Recurrent Neural Network

Figure 5 Driving Port-ODE-NET

Original networkNeural network equivalent

Challenges

q Suffer from heavy training

q Less inputs? Only boundary?

Driving Port Dynamic Equivalence

Figure 6 DP-NeuDyE closed-loop simulation

Utilize only 6% of inputs
Comparable high accuracy

Fault clears
Fault occurs
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Conclusion and Promising Future

Neuro-Reachability of Networked Microgrids, Y. Zhou, P. Zhang
Physics-Informed, Safety and Stability Certified Neural Control for Uncertain Networked Microgrids, L Wang, S Zhang, Y Zhou

Achievements

q Only need boundary measurements
q Accurately capture the dynamics of the 

external system 
q Predict in real-time

Industrial Applications

q Update external equivalent model in real 
time

q Online transient analysis
q Stability analysis…

Future Steps:
• More complicated system with diversified testing cases
• More efficient and scalable in larger systems
• Integrated  with other AI components
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