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SUMMARY 

 
Traditional grid analytics are model-based, relying strongly on accurate models of power systems, 

especially the dynamic models of generators, controllers, loads and other dynamic components. 

However, acquiring thorough power system models can be impractical in real operation due to 

inaccessible system parameters and privacy of consumers, which necessitate data-driven dynamic 

equivalencing of unknown subsystems. Learning reliable dynamic equivalent models for the external 

systems from SCADA and PMU data, however, is a long-standing intractable problem in power 

system analysis due to complicated nonlinearity and unforeseeable dynamic modes of power systems.  

 

    This paper advances a practical application of neural dynamic equivalence (NeuDyE) called Driving 

Port NeuDyE (DP-NeuDyE), which exploits physics-informed machine learning and neural-ordinary-

differential-equations (ODE-NET) to discover a dynamic equivalence of external power grids while 

preserving its dynamic behaviors after disturbances. The new contributions are threefold:   

• A NeuDyE formulation to enable a continuous-time, data-driven dynamic equivalence of 

power systems, saving the effort and expense of acquiring inaccessible system; 

• An introduction of a Physics-Informed NeuDyE learning (PI-NeuDyE) to actively control the 

closed-loop accuracy of NeuDyE; and 

• A DP-NeuDyE to reduce the number of inputs required for the training. 

 

    We conduct extensive case studies on the NPCC system to validate the generalizability and 

accuracy of both PI-NeuDyE and DP-NeuDyE, which span a multitude of scenarios, differing in the 

time required for fault clearance, the specific fault locations, and the limitations of data. Test results 

have demonstrated the scalability and practicality of NeuDyE, showing its potential to be used in ISO 

and utility control centers for online transient stability analysis and for planning purposes.   
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Figure 1 Topology of the NPCC system 

 

1. INTRODUCTION 

Reliable discovery of dynamic equivalent models for unidentified subsystems, specifically external 

systems, is crucial to ensure reliable operations of large-scale interconnected transmission systems [1]. 

However, this task has been a longstanding challenge due to the existence of nonlinear dynamics, 

complex coherency characteristics, and unavailable component models [2, 3]. Recent advancements in 

Phasor Measurement Units (PMUs) provide an opportunity to readily obtain rich history of high-data-

rate measurements, which fostered the development of data-driven dynamic equivalence [4]. Despite 

various attempts being reported in the literature, significant challenges persist: (I) Learning 

continuous-time dynamic behaviors using discrete-time measurements is difficult. Traditional 

discretization techniques may not fully capture the intricacies of the continuous dynamics, leading to 

large inaccuracies that limit its practical implementations. (II) Achieving robust and stable closed-loop 

operations under diverse operating conditions and disturbances is essential for safe plug-and-play 

integration of dynamic equivalence. Whereas none of the existing dynamic equivalencing methods 

have achieved successful closed-loop operations with bulk power grid models. (III) The final challenge 

lies in minimizing the required measurements to ensure a feasible and practical implementation. 

   This research makes three significant contributions to address the aforementioned challenges:  

• Formulation of Ordinary Differential Equations (ODEs)-Net-enabled Dynamic Equivalence 

(NeuDyE): It leverages ODEs and neural networks to model the system dynamics, providing a 

continuous-time, data-driven representation that aligns with the actual behavior of power grids. 

• Introduction of Physics-Informed Neural Dynamic Equivalence (PI-NeuDyE): It combines an 

ODE-NET-enabled equivalent model with a physics-informed learning to identify a continuous-

time dynamic equivalence while ensuring the closed-loop dynamic behaviors under disturbances. 

• Implementation of a Driving Port NeuDyE (DP-NeuDyE): It reduces the number of inputs 

required for training, making it more manageable and cost-effective to deploy in real-world 

interconnected bulk power systems.  

2. PROBLEM FORMULATION  

For a reliability coordinator (RC), the 

entire interconnection can be 

partitioned into an internal system 

(InSys) and the external systems 

(ExSys). Take the 140-bus NPCC 

system as an example, InSys and 

ExSys, connected through two tie 

lines [5], are illustrated in Figure 1. 

    InSys (buses 1-36), which is the 

simplified ISO New England (ISO-

NE) system, represents the subsystem 

that can be characterized by precise 

knowledge of its structure and 

parameters, enabling straightforward formulation using dynamic models. InSys can be formulated 

based on the known dynamics of components by a set of differential algebraic equations (DAEs). 

In contrast, ExSys (buses 37-140) lacks accessible physics models due to factors such as 

unavailable system state measurements, privacy concerns and inaccessible local measurements, e.g., 

real-time dispatch of the generators. Therefore, a data-driven neural network based dynamic 

equivalence is relied upon to model ExSys, as in (0.1) [6]: 

 ( , , ) ( , , ) 0; ( , );  n
in

in i
ex

i in tie ex inn tie

dx
G x y

dx
x y i i

td
x

dt
z== =

                           (0.1) 

    Here, inx  denotes the state variables of InSys’s components (e.g., generators, exciters); iny  denotes 

the algebraic variables of InSys such as power flow states; tiei  denotes the tie line currents. Functions 

 and G  denote the dynamic and algebraic equations of InSys, respectively, which can be readily 

established based on the physics models of InSys. exx  denotes the state variables of ExSys; inz  
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denotes the features from InSys, which is selected from part of InSys states to describe the interaction 

between InSys’ dynamics and ExSys’ dynamics. is the forward propagation function of a neural 

network, which mimics the ExSys dynamics. Neural network-enabled dynamic equivalence is flexible 

for approximating a dynamic system without requiring the system to be linear or assuming any 

dynamical modes beforehand.  

3. ODE-NET-ENABLED DYNAMIC EQUIVALANCE 

3.1 PHYSICS-INFORMED CONTINOUS-BACKPROGATION 

A neural network (NN) is a nonlinear function with parameters that are optimized by minimizing a 

loss function, typically computed as the error between measurements and NN outputs. However, in 

this problem, the challenge is that the NN's output is a derivative exx  while the measurements provide 

only direct values exx . Two approaches exist: discrete-time learning and continuous-time learning. 

Discrete-time learning discretizes the continuous-time differential equations into discrete-time 

difference equations. It is sensitive to derivative estimation, resulting in biased training outcomes due 

to residue errors during training. Although it may produce satisfactory derivatives fitting, it cannot 

guarantee the accuracy of system states after numerical integration. 

    ODE-NET training is different since it involves numerical integration in its constraints. It directly 

minimizes the difference between real dynamic states and trained dynamic states, which requires no 

discretization and fully respects the continuous-time characteristics of power system dynamics. By 

introducing an adjoint method [7, 8] to remove the numerical integration constraints, a physic-

informed (PI) continuous-backpropagation is developed: 
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where   and   respectively denote the adjoint states for ExSys and InSys,  is equivalently 

formulated from using (0.1). is an ODE-Net parameterized by  . The dynamics of InSys and 

ExSys are both considered in (0.2), which assures the performance of ODE-NET in the closed-loop 

simulation of the whole power system. With proper adjoint boundary conditions [8], the physics-

informed gradient is: 
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    Finally, the gradient descent for   can be performed using 0|t =  integrated from (0.3). 

3.2 NETWORK EQUIVALENT SEEN FROM DRIVING PORT 

In the previously devised PI-NeuDyE, the optimal closed-loop results are achieved using extensive 

inputs from the internal system, which may not be readily available in practical applications. To make 

the method applicable in such scenarios, we develop an enhanced neural equivalent technique called 

the Driving Port NeuDyE (DP-NeuDyE) which only needs boundary voltages pv  for the tie-lines, 

empowering the practical implementations of NeuDyE in utilities and ISOs. 

3.3.1 Algebraic component separation  

If ExSys is static, a Norton equivalent current source, depicted in Figure 2(b), can replace it. From the 

perspective of InSys, the representation of ExSys in full detail or as a Norton equivalent current source 

yields the same output tiei  for the given input 
pv . Inspired by the Norton equivalent theory, we 
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develop a neural network observed from the driving port. To capture its nonlinear dynamics,  

measurements of port voltages 
pv  and tie currents tiei  are utilized to discover the state space model of 

ExSys as shown in Figure 2(b). The tie currents tiei  are selected as the state variables for external 

system exx , whose continuous differential structure is represented by the neural network; then a magic 

touch, the algebraic component separation, is introduced bellow: 

 ( , , );  ( , ) 0  ;  tie
tie p tie p tie s ex p

di
i v i v i C x D v

dt
= = =  +   (0.4) 

where the port voltages 
pv  corresponds to the InSys features inz  in (0.1).  The tie currents tiei  is 

represented as a linear combination of state variables and inputs. Here matrices sC and D are constant 

matrices. If a fault happens in the internal network at time instant it , sudden changes may happen in 

( ) ( ) ( )p i p i p iv t v t t v t = + − , while ( )ex ix t  keeps invariant in a very short period of t , 

i.e. ( ) 0ex ix t = . The components tiei  can be split into two types of components: continuous-state-

variable components 
_tie cs s exi C x=   and algebraic components 

_tie a pi D v=  . Algebraic components 

embody the port voltages 
pv , which may exhibit discontinuity during switching events within the 

internal network. On the other hand, continuous-state-variable components, _tie csi , are employed as the 

constituents of the neural network equivalent as in equation (0.4). These components fulfill the need 

for continuity as depicted in equation (0.4). To compute the coefficient matrix D , we leverage 

measurement data obtained during the fault period. This is achieved by using the least squares method: 
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where 
pn  is the number of port voltages, 

fn  is the number of faults whose port voltages and tie line 

currents are in the data sets. Define ( ) ( ) ( )p i p i p iv t v t t v t = + −  and ( ) ( ) ( )tie i tie i tie ii t i t t i t = + − . 

The continuous component _  tie cs tie pi i D v= −  . The neural equivalent network in (0.4) and the DAE 

now become: 

 
_

_ _( , , );  ( , , );  ( , , , , ) 0
tie cs in

tie cs p in in tie in in tie cs tie p

di dx
i v x y i x y i i v

dt dt
= = =  (0.6) 

    The neural equivalent of the external system and the corresponding formulated interface as shown in 

Figure 3 are integrated into Transient Stability Analysis (TSA) simulation. The values of current 

sources are updated by applying an explicit integration method to (0.6). During the time interval from 

0 ~ nt , ODE-NET is trained by minimizing the loss function defined by the error between the state 

measurements _
ˆ
tie csi  and the numerical solution _tie csi  by (0.6), and similar as in (0.3), ODE-NET 

computes gradients using the adjoint sensitivity method : 

      
(a) Original networks                    (b) Norton equivalent 

                  Figure 2 Network equivalent methodology                       Figure 3 TSA interface for NeuDyE                                                                       
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Figure 4 RNN empowered ODE-NET 
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3.3.3 Strengthening ODE-NET Based on Recurrent Neural Network 

Data-driven methodologies predominantly depend on observable states to construct the neural 

equivalent model, as exemplified in equation (0.4). However, this model reduction approach inherently 

leads to a scenario where state variables constitute only a minor subset of the comprehensive state 

variables present in the original power network. As a result, such a reduction may not entirely 

encapsulate all the crucial dynamic properties intrinsic to the power system.  

    To address this deficiency of information, we enhance DP-NeuDyE in this section by leveraging 

historical data through the implementation of Recurrent Neural Networks (RNNs) [9]. RNNs, with 

their unique ability to remember past information, provide a robust mechanism to incorporate temporal 

dynamic behavior into the model. The integration of RNNs into the DP-NeuDyE framework is 

explained as follows. The differential term 
_tie csdi dt  can be represented as: 

 
_ _ _ _ _

0

( ) ( ) ( ) ( )
lim

tie cs tie cs tie cs tie cs tie csdi i t i t i t i t t

dt t



→

− − − −
= 


 (0.8) 

where t  denotes a short period of time. 

Equation (0.8) implies that the historical 

information at time instant t t−  could help 

determine the derivative at time instant t .   

Recall that the continuous backpropagation 

for ODE-NET in 3.3.2 already considers 

integration along the time by solving an 

augmented differential equation. Therefore, 

the backward propagation throughout time 

for the RNN cell is ignored and the gradient 

descent method used in 3.3.2 can directly be 

applied to the RNN-empowered ODE-NET.  

As illustrated in Figure 4, the structure of 

the RNN cell integrates the output of a 

specific neuron from the previous time step 

into the computation of the current time 

step’s output for the same neuron. This 

mechanism effectively leverages historical 

data from the preceding time step to assist in calculating the derivative of the current time step. 

Therefore, this approach ameliorates potential information deficiencies that might arise when 

computations rely on a limited subset of state variable, thereby bolstering the overall accuracy and 

robustness of DP-NeuDyE. 

4. CASE STUDY 

In this section, the detailed training and testing procedures of NeuDyE are introduced. Simulation  

results of PI-NeuDyE and DP-NeuDyE are presented to demonstrate their efficacy and practicality. 

4.1 TRAINING DETAIL 

The ground truth electromechanical trajectories are obtained by simulating the complete, physics-

based 140-bus NPCC system via the Power System Toolbox (PST). The PST results are verified with 
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simulations from Transient Security Assessment Tool (TSAT). Trapezoidal rule is adopted as the 

numerical integration method for the devised method. 

4.1.1 Open-loop, data-driven ODE-NET Training 

PI-ODE-NET: as introduced in Subsection 3.2.2, the selected states are from generators, exciters, 

governors, and line currents of InSys as ins , in total 90 dimensions; the tie line currents are the states 

of ExSys exx  with 4 dimensions (2 tie lines, each has a real part and an imaginary part).  

RNN-empowered DP-ODE-NET: followed by 3.3, ins  includes boundary voltages with 4 dimensions 

(2 ports with real parts and imaginary parts); exx  consists of tie line currents; as such, DP-ODE-NET 

is faster than PI-ODE-NET. However, this comes at the expense of compromising the model’s 

generalization ability, resulting in less accurate predictions for unseen scenarios. 

4.1.2 Closed-Loop Testing  

After an ODE-NET is obtained, the closed-loop tests check its performance. Closed-loop means the 

ODE-NET-based ExSys model replaces the unknown subsystems and integrates with the physics-

based InSys model. This is the final setup. The entire system’s dynamics are then computed through 

numerical integration. The predicted values are trajectories simulated by the physics-neural-integrated 

system, containing physics-based InSys and the ODE-NET-based dynamic equivalence of the ExSys. 

4.2 SIMULATION RESULTS 

4.2.1 Varied fault clearing times and fault locations using PI-NeuDyE 

25 training scenarios are generated by launching three-phase faults at 0.50s at buses 18, 19, 20, 21, 

or 28 with fault clearing set randomly within a time interval [0.53s, 0.6s]. The training variables of 

InSys have 90 dimensions as mentioned in 4.1.1. Figure 5 shows the schematic diagram of PI-NeuDyE 

and the test results on buses 1, 32, 16 with faults cleared at 0.54s, 0.56s, and 0.58s, respectively, which 

are new clearing times and locations to the training sets. Trajectories of boundary voltage of bus 35 

demonstrate a perfect match between PI-NeuDyE’s results and that from the full NPCC model, showing 

that it can accurately represent the dynamics regardless of changes in fault durations or fault locations. 

Further, in Figure 6, 108 testing scenarios are generated with new fault locations and random fault 

clearing times at buses 2, 5, 9, 16, 25, 28, 32, 34 and 35. The box plot shows that the overall relative 

error is lower than 1%, indicating a satisfying generalization ability. 

4.2.2 Reduced variables using DP-ODE-NET  

As previously mentioned, DP-NeuDyE is designed for potential practical applications that require 

limiting the number of input variables. In contrast with 4.2.1, DP-NeuDyE only needs 4 dimensions of 

InSys features instead of 90. The selections of ExSys features are the same for both methods. This 

model in Figure 7 is derived from five distinct dynamic trajectories, each triggered by phase-to-ground 

faults at the T-line, as highlighted in red. In the testing, the low-frequency oscillation is initiated by a 

phase-to-ground fault located at the green circle. It can be observed that DP-NeuDyE is able to 

precisely predict the low frequency oscillations in a fairly large area. Since the testing faults are not in 

the training set (historical record), the predictability of the proposed method is validated. Besides, 

there are two oscillation modes in the full model-based trajectory: 0.5991 Hz with a magnitude of 

0.2155 and 1.24813 Hz with a magnitude of 0.1349. The neural equivalent model-based simulation 

also accurately predicts those oscillation modes, with a magnitude of 0.2051 and 0.1431 respectively.   

4.2.3 Generalizability analysis based on electrical distance 

To quantify the NeuDyE models’ generalization performance, we employ the electrical distance 

between the fault locations in the testing set and those in the training set as a measure. The network 

topology is transformed into an adjacency matrix using graph theory, as depicted in equation (0.9). 

Consequently, the electrical distance between a new fault location and those in the training set can be 

determined from the adjacency matrix by selecting the shortest distance. 
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Electric connection between BUS i and j:  

Ajacency matrix : Else: 0

Fault dynamic record near BUS i: 1

ij ij

ij

ii

A X

A A

A

=


=
 =

 (0.9) 

where i j  and
ijX is the reactance (p.u.) in the branch connecting BUS  i  and j . 

 

 

Figure 5 Closed-loop test results of fault with different locations 

 

Figure 6 Accuracy of PI-NeuDyE under 108 cases with new fault locations and random clearing times 

 

 
Figure 7 DP-NeuDyE closed-loop simulation. 

  

In the previous case study as depicted in Figure 7, the electrical distances from the test set to the 

training set are as follows: 0, 0.0255, 0.0404, 0.0369. These electrical distances are relatively small; 

the generalizability of the DP-NeuDyE is thus relatively good. However, if a fault occurs distantly, 

such as the T-line between buses 19 to 17, where the electrical distance is 0.0948, DP-NeuDyE may 

encounter challenges in making accurate dynamic predictions, as illustrated in Figure 8(a).  

    That is exactly when RNN-empowered ODE-NET shows its advantage of a better generalization 

ability. For the same training set and testing scenario, the trajectory by the RNN-empowered neural 

equivalent model is shown in Figure 8(b), which achieves convergence. 
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(a) Erroneous prediction                               (b) RNN empowered model prediction 

Figure 8 RNN-empowered DP-ODE-NET simulation 

    However, its performance is still not as commendable as PI-NeuDyE (results are omitted due to 

space). The primary reason behind this discrepancy lies in the training process. PI-NeuDyE trains in a 

closed-loop manner by considering the interacting dynamics of both InSys and ExSys, involving 90 

dimensions of InSys features. Whereas DP-NeuDyE only sees from the driving port, utilizing only 4 

dimensions of boundary measurements as InSys features. As a result, there exists a trade-off between 

training efficiency and generalization ability, which impacts the overall performance of the DP-

NeuDyE. For fault not too distant from the training sets, both DP-NeuDyE and PI-NeuDyE yield 

satisfactory results. 

5.  CONCLUSION 

This article introduces a physics-integrated Neural Dynamic Equivalence (PI-NeuDyE) and its 

practical application Driving Port NeuDyE (DP-NeuDyE), which uncovers a powerful continuous-

time dynamic equivalence of external systems. One of its key advantages is the ability to preserve the 

continuous-time dynamic characteristics of power grids while using fewer variables. The effectiveness 

of DP-NeuDyE and PI-NeuDyE are demonstrated through case studies conducted on the 140-bus 

NPCC system, showcasing their performance under various fault locations and clearing times. 

Furthermore, comparisons are made between DP-NeuDyE and PI-NeuDyE in terms of efficiency and 

generalization ability.   
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