

nationalgrid

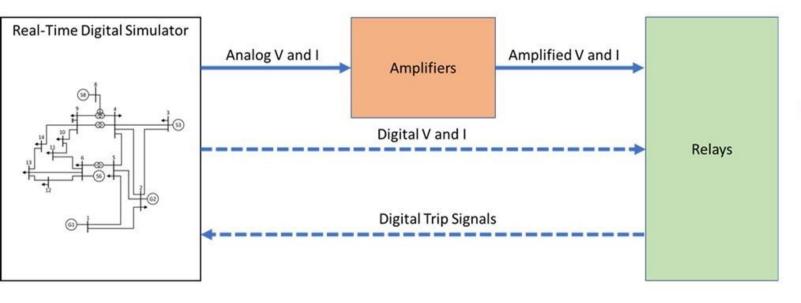
Building A Hardware-In-the-Loop Testing Setup For Evaluating Relays Impacted by High Penetration of Inverter-Based Resources

Henry Chao, Quanta Technology, LLC CIGRE USNC Grid of The Future Symposium October 9-12, 202, Kansas City, MO, USA

NYSERDA

Motivations of the Work

- Take proactive actions to identify and mitigate any potential issues well before their emergence
 - New York State power grid aims to reach carbon neutral by 2040
 - High penetration of inverter-based resources along with the retirement of many existing power plants are expected
 - Existing protective relays and their coordination could be impacted as soon as the penetration of IBRs reaches a critical level
 - Mitigation solutions must be developed and deployed before such a critical level is reached
 - To avoid forced curtailment of IBRs, and
 - To prevent major system disturbances due to relay misoperations

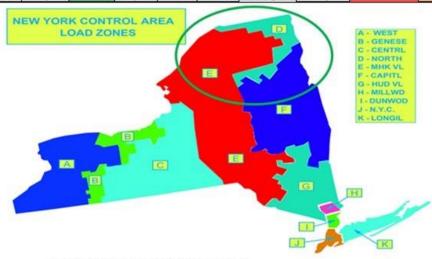


Evaluate IBRs Impact on Relays under Realistic Grid Conditions

Creating a hardware-in-the-loop (HIL) testing setup using real-time digital simulators (e.g., RTDS, Opal-RT) requires:

- Creating system models for realistic future transmission grid conditions
- Accurate IBR models (i.e., models accurately mimic the real IBRs)
 - Vendor-developed models Project team reached out to many vendors directly and through NYPA and NGrid in this project.
 - Rapid evolvement of the IBR products.
 - At the start of our research project, there were no vendor-developed IBR models available on real-time digital simulators.

HIL Setup Using A Real-Time Digital Simulator for Relay Testing



Different system models for real-time digital simulator RTDS were developed for this project

- A base system model
 - Representing the current electric power system
 - Serve as a benchmark system to establish performance of existing relays under current system condition
- Hi-IBRs system models
 - Have high penetration of IBRs
 - For evaluating Hi-IBRs impact on relay performance

Select A Focus Area in A Future New York State Power System

Zones	Existing Capacity (MW)			IBR Level	Projected New IBR Capacity (MW)				S+W Total	IBR Total /	S+W Total / New
	Wind	Solar	Total Gen	now (%)	(%) Wind Solar Battery IBR Total S+W 1013		2+4A LOTAL	Total Gen (%)	Total Gen w/o B (%)		
Α	179	-	3,376	5%	566	2,565	530	3,660	3,309	108%	51%
В	-		765	0%	200	965	21	1,186	1,165	155%	60%
С	518	-	6,381	8%	940	3,482	784	5,206	4,941	82%	46%
D	678	-	1,921	35%	847	727	20	1,594	2,252	83%	64%
Е	442	2	1,004	44%	1,135	3,180	28	4,342	4,756	433%	89%
F	-	-	4,492	0%		1,565	0.0	1,565	1,565	35%	26%
G	-	-	4,790	0%	-	20	897	917	20	19%	0%
Н		2	1,088	0%	57	50	1,300	1,300	3379	119%	0%
-1	-	-	-	#N/A	-	-	400	400	-	#N/A	#N/A
J	2	2	9,618	0%	8,848		3,536	12,384	8,848	129%	48%
K	-	32	5,236	0%	18,498	59	388	18,945	18,588	362%	78%

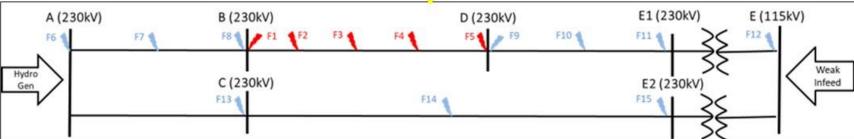
https://www.nyiso.com/documents/20142/1397960/nyca_zonemaps.pdf

Target year 2030

- New York State is to reach 70% carbon-free electricity by 2030 and certain area may see a much high penetration
- Most proposed projects for in-service before/by 2030 in the NYISO queue have a high likelihood to be so
- Focus area (North Country) selection criteria
 - Has high penetration level of IBRs than other areas by 2030
 - Has more weak spots in the area than other areas
 - Preferably within NYPA and NGrid control areas

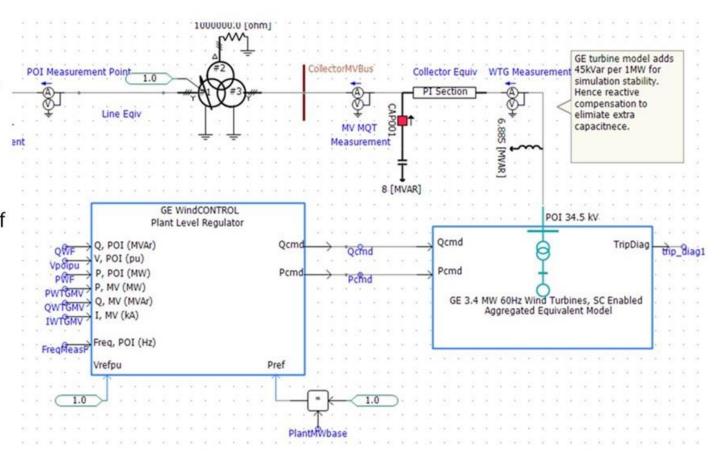
Load Zone	Α	В	С	D	E	F	G	Н	1	J	K	Total
Buses	131	70	209	58	150	140	81	29	39	253	76	1236
No. of Top 10% Weak Buses	10	7	28	10	39	14	1	4	0	4	7	124
Weak Buses/Buses (%)	7.6	10.0	13.4	17.2	26.0	10.0	1.2	13.8	0.0	1.6	9.2	10.0

Specific Line Selection


The line selection criteria

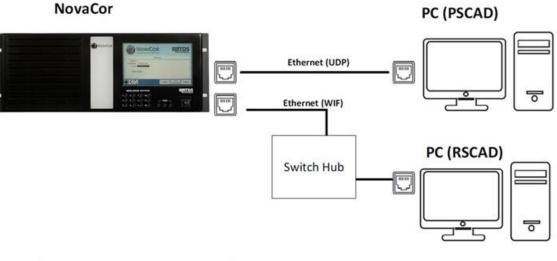
- At one of the weak spots in the focus area
- Close to many wind farms, solar farms, and BESS

The results


- A 230 kV line B-D was selected;
- A 115 kV line was less represented in detail.

An RTDS IBR Model to Match Vendor Blackbox IBR Model in PSCAD

- Inverter manufacturer developed IBR model is required for power system electromagnetic transient (EMT) studies.
 - Comes commonly in PSCAD black box format.
 - Manufacturers currently have not developed RTDS IBR models.
- Huge challenge to create digital twins of IBR models in RTDS without the knowledge of
 - IBR electrical or mechanical model parameters.
 - IBR controller details.
 - plant controller details.
 - Collector systems, GSU, capacitor banks, etc.

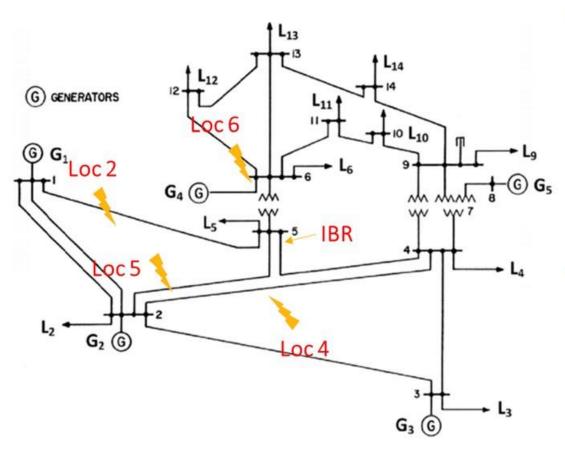


Systematic RTDS IBR Model Tuning and Validation

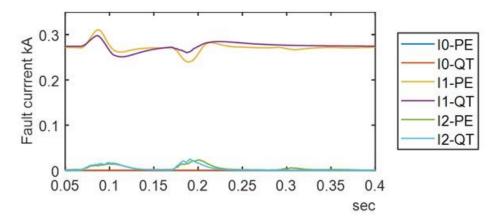
- Quasi-steady-state response matching
 - Focus on filter time constants, PID gains, voltage-dependent current limits, ramp rates, etc.
- Fault transient response matching
 - Focus on HLVRT, fault, protection functions, etc. (red box)
 - Inner loop control and modulation (yellow box)
 - Tripping logic. (purple box)
- System interactions matching
 - Connect to a self-developed IEEE-14 bus system on RTDS and focus on internal and external fault responses.

Developed RTDS IBR Model Validation Through RTDS Co-Simulation

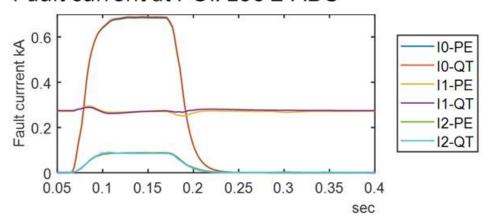
Other RSCAD component


Send Data
ETHERNET UDP SKT
COMPONENT
Walt for Data
Receive Data

Other RSCAD component


- To save time and avoid subtle model differences between RTDS and PSCAD, the RTDS co-simulation approach was used.
 - Simulate a self-developed IEEE 14-bus power system and the inverter hardware in RTDS
 - Simulate self-developed RTDS IBR controller model
 - Simulate IBR vendor black box controller model in PSCAD
 - UDP interface exchanges analog measurements and control outputs between RTDS and PSCAD.
 - Limitations:
 - Does not support real-time co-simulation
 - RTDS only allows control input

Δt


Self-Developed RTDS IBR Model Validation Results (1)

Fault current at POI: Loc 2 ABC

Fault current at POI: Loc 2 ABG

Self-Developed RTDS IBR Model Validation Results (2)

- The overall Mean Absolute Error (MAE) is 0.0031 kA (IBR rated current 280A)
- The maximum error is 0.0085 kA.

Fault Cases	I0 MAE	I1 MAE	I2 MAE
FLTLOC_2_AB	0.0000	0.0051	0.0026
FLTLOC_2_ABC	0.0000	0.0070	0.0020
FLTLOC_2_ABG	0.0011	0.0053	0.0022
FLTLOC_2_AG	0.0016	0.0056	0.0021
FLTLOC_4_AB	0.0000	0.0049	0.0025
FLTLOC_4_ABC	0.0000	0.0071	0.0023
FLTLOC_4_ABG	0.0017	0.0055	0.0024
FLTLOC_4_AG	0.0015	0.0063	0.0022
FLTLOC_5_AB	0.0000	0.0054	0.0022
FLTLOC_5_ABC	0.0000	0.0085	0.0025
FLTLOC_5_ABG	0.0023	0.0059	0.0025
FLTLOC_5_AG	0.0026	0.0065	0.0023
FLTLOC_6_AB	0.0000	0.0067	0.0019
FLTLOC_6_ABC	0.0000	0.0055	0.0012
FLTLOC_6_ABG	0.0032	0.0049	0.0021
FLTLOC_6_AG	0.0017	0.0070	0.0020

Main Conclusions

- It is possible to create an HIL setup for properly evaluating the performance of existing relays under realistic future system operation conditions.
- The success in creating such an HIL setup is highly depending on
 - Ability to properly articulate credible future power system operating conditions, and
 - Ability to obtain or self-develop the accurate IBR EMT model for real-time digital simulators.

Thank You!

Questions?

919-334-3000

quanta-technology.com

info@quanta-technology.com

<u>linkedin.com/company/quanta-technology/</u>

twitter.com/quantatech

Y. HU, H. CHAO, J. HOLBACH, Z. CHENG, S. NARAYANAN, T. NGUYEN, E. L. SEITER, M. RAZANOUSKY

919-334-3000

info@quanta-technology.com