CIGRE-US National Committee 2023 Next Generation Network Paper Competition

Navigating Uncertainties in Dynamic Line Rating Estimation

B. LEIST, R. GRUDT, N. PINNEY, K. ENGEL, J. SPALENKA, C. WATERS, J. MARMILLO

LineVision Inc.

Why Dynamic Line Ratings?

Increased Capacity 100% growth in grid capacity required by 2035

Interconnection Backlog

1,400+ GW of interconnection projects stuck in the queue

Forest Fires

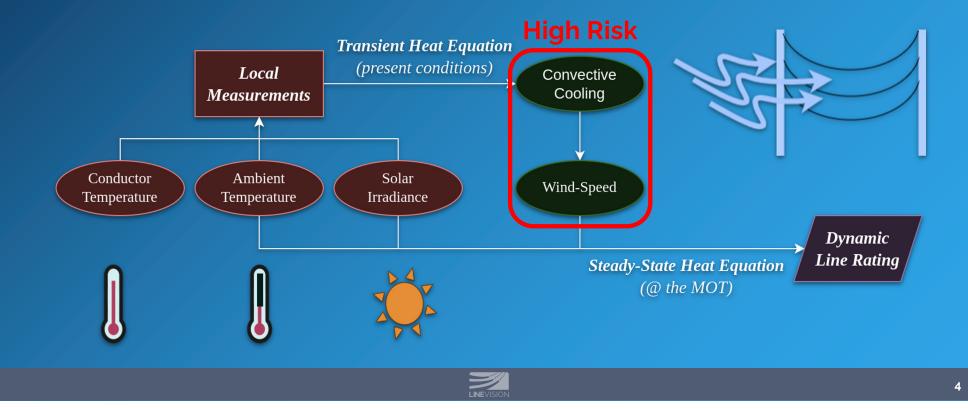
Exceeding clearance limits can ignite vegetation

Blackouts / Brownouts

\$90B+ in economic losses from Texas' 2021 storm

The Heat Equation

What are Line Ratings?


Functional De	pendencies	cooling	solar heating convecti
Resistive Heating $q_R(T_c) > 0$	Radiative Cooling $q_r(T_a, T_c, \varepsilon_c) < 0$		n I
Solar Heating $q_s(Q_s, \alpha_c) > 0$	Convective Cooling $q_c(T_a, T_c, v_a, \theta_a) < 0$		resistive I ²
T_c - Conductor Temperature α_c - Conductor Absorptivity	Q_s - Solar Irradiance T_a - Air Temperature v_a - Air Speed	$mc \frac{dT_c}{dt} = I^2 I$	heating $R + q_r + q_s + q_s$
ε_c - Conductor Emissivity	θ_a - Air Direction	Rate of	Heating / Coo Change of

The Hot-Wire Approach - CIGRE TB-498

What are Dynamic Line Ratings?

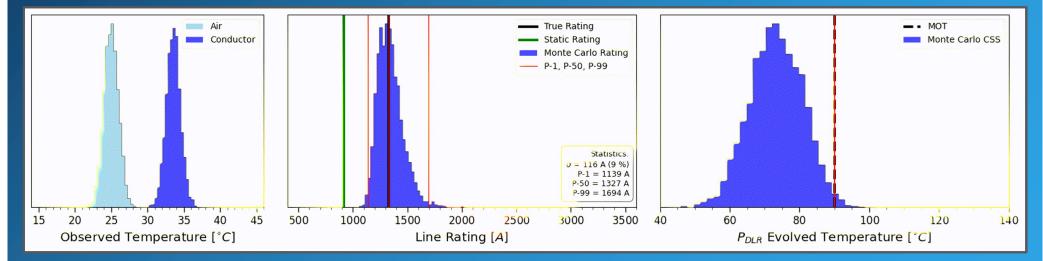
Guide for Application of Direct Real-Time Monitoring Systems



Monte Carlo Simulations

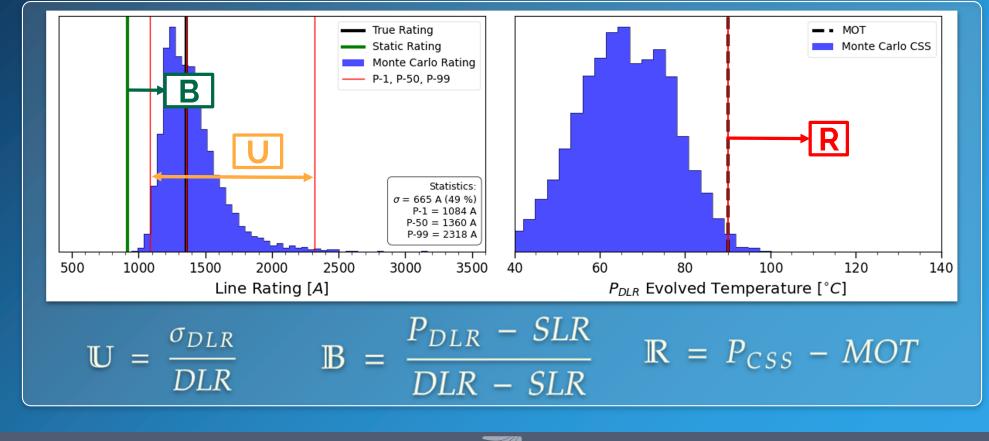
Uncertainty Propagation

Simulate the "true" conditions

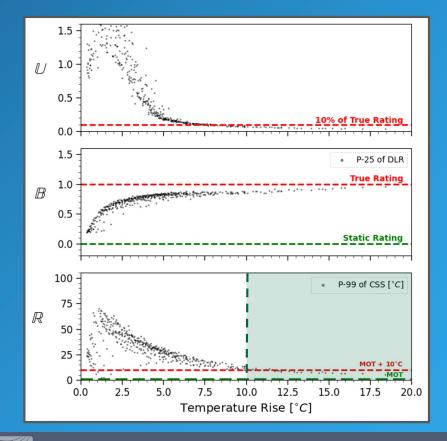

Add measurement error

Temperature Input Distributions \rightarrow DLR Distribution \rightarrow CSS Distribution

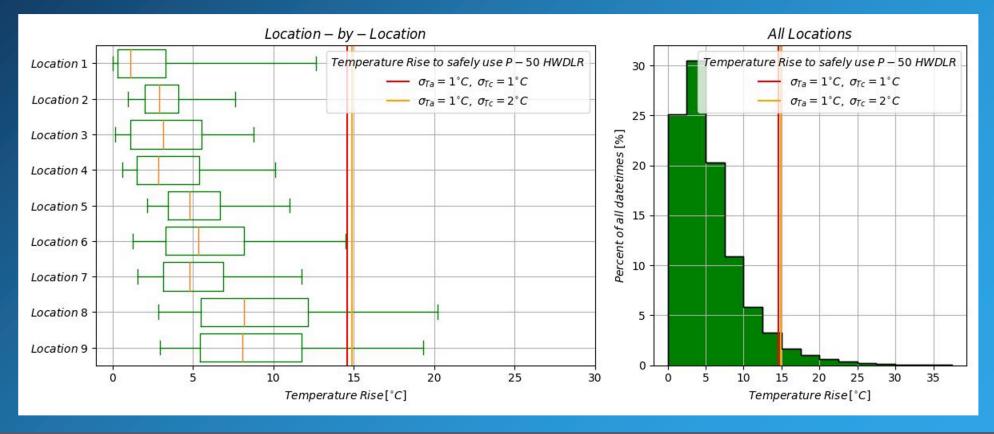
Uncertainty Propagation


High-temperature rise leads to low DLR uncertainty, and well behaved evolved conductor temperatures.

Low-temperature rise explodes the DLR uncertainty, and results in unpredictable evolved conductor temperatures.


Uncertainty, Benefit, & Risk

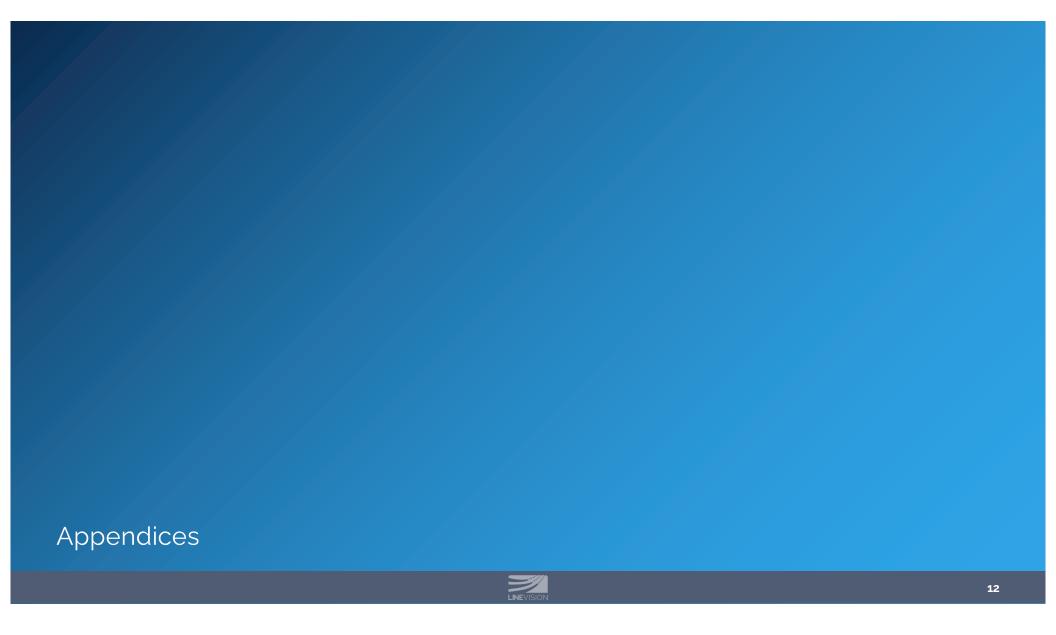
UBR Figures


Uncertainty, Benefit, & Risk

- The Uncertainty in DLR increases as the temperature rise decreases.
- The Benefit of the DLR decreases as the temperature rise decreases.
- The **Risk** of the DLR increases as the temperature rise decreases.

Sampe: 9 Sites

Statistics from the Field


Sample: 9 Sites Statistics from the Field				
	σ _{Ta} = 0.5 ⁰ C	σ _{Ta} = 1.0 ⁰ C	σ _{Ta} = 1.0 ⁰ C	
	σ _{Tc} = 1.0 ⁰ C	σ _{Tc} = 1.0 ⁰ C	σ _{Tc} = 2.0 ⁰ C	
P _{DLR} - 50	4.4 %	4.4 %	4.4 %	
P _{DLR} - 25	13 .2 %	10.2 %	4.6 %	
P _{DLR} - 10	29.0 %	27.9 %	11.3 %	
P _{DLR} - 01	100 %	100 %	100 %	

Percentage of time the DLR p-value is a <u>safe</u> choice: P_{CSS} -99 < MOT + 10°C

Thank You

"Any measurement that you make, without any knowledge of the uncertainty, is meaningless." - <u>Walter Lewin</u>

LineVision Inc.

Outline

I. Dynamic Line Ratings

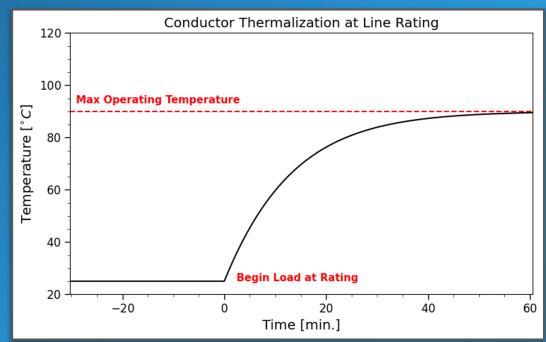
How are Line Ratings defined?
The Hot-Wire DLR Approach [CIGRE TB-498]

II. Uncertainty Propagation

- Monte Carlo Simulations
- \succ Measurement Error \rightarrow DLR Uncertainty

III. Uncertainty, Benefit, & Risk

- UBR as Insightful Metrics
- ➤ The Impact of Temperature Rise
- ➤ How frequently is the HW-DLR safe?



The Heat Equation

Dynamic Line Ratings

The Transient Heat Equation: $mc \frac{dT_c}{dt} = I^2R + q_r + q_s + q_c$ Heating / CoolingRate of Change of T_c The Steady-State Heat Equation:

$$0 = I^2 R + q_r + q_s + q_c$$

Measurement Error

Uncertainty Propagation

- Many parameters impact the calculation of DLR.
- Uncertainty in these inputs, propagate to the DLR uncertainty.
- The calculations each term can be found in *IEEE-738 2012*.

$$mc \frac{dT_c}{dt} = q_R + q_s + q_r + q_c$$

Heat Density Term	Dependencies	
Resistive Heating $q_R(T_c) > 0$	<i>T_c</i> - <i>Conductor Temperature</i>	
Solar Heating $q_s(Q_{s}, a_c) > 0$	Q_s - Solar Irradiance α_c - Conductor Absorptivity	
Radiative Cooling $q_r(T_a, T_c, \varepsilon_c) < 0$	T_a - Air Temperature T_c - Conductor Temperature ε_c - Conductor Emissivity	
Convective Cooling $q_c(T_a, T_c, v_a, \theta_a) < 0$	T_a - Air Temperature T_c - Conductor Temperature v_a - Air Speed θ_a - Air Direction	

Input Parameter Range

Uncertainty Propagation

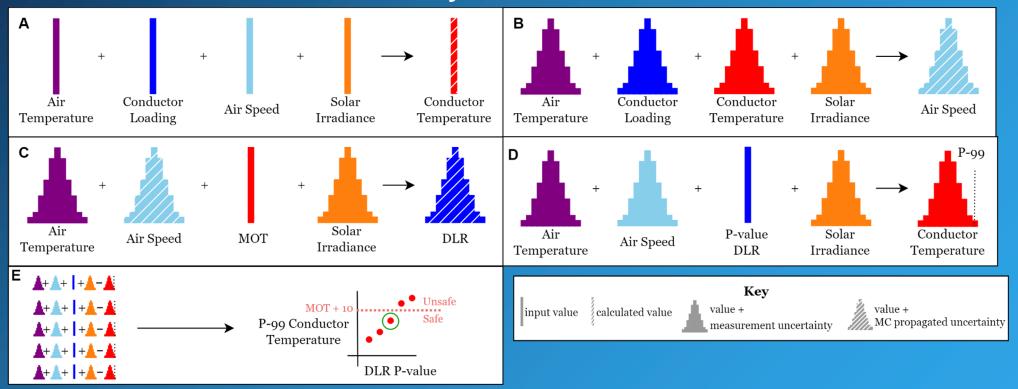
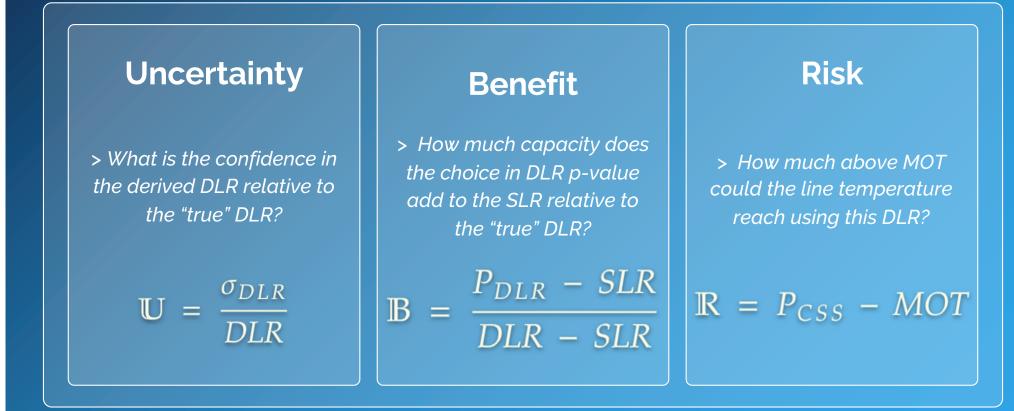

Parameter	Value	Uncertainty (σ)
Air Speed	1.5 m/s (0.61 m/s)	
Air Temperature	25.0 °C (40.0 °C)	1.0 °C
Cond. Name / Type	Drake / ACSR	_
Cond. Absorptivity / Emissivity	0.8 / 0.8	0.02 / 0.02
Cond. Loading	200 A	5.0 A
Cond. Temperature		1.0 °C
Solar Irradiance (Noon)	1027 W/m ² (1025 W/m ²)	50 W / m ²

Table 1: All of the results involved in this work, unless otherwise stated, were derived from the assumed conditions and measurement uncertainties tabulated here. The parenthetical values are the conditions used to generate the static line rating.

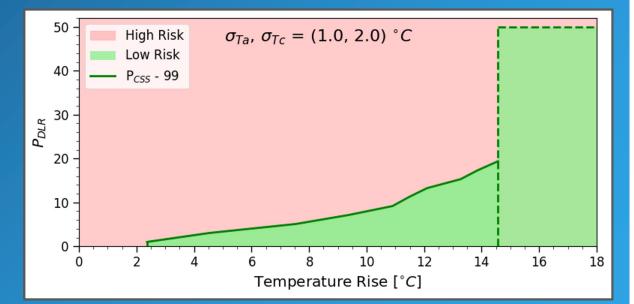
Monte Carlo Reiteration


Uncertainty, Benefit, & Risk

➤ Choose a P_{DLR} value, rerun the Monte Carlo to determine if the P_{CSS}-99 exceeds the MOT + 10 °C.

17

Uncertainty, Benefit, & Risk



DLR P-Value Thresholds

Uncertainty, Benefit, & Risk

Reiterate the process on the previous slide:

- Choose a new DLR p-value
- Find the temperature rise for which P_{CSS}-99 < MOT + 10°C
- The threshold for safe P_{DLR} is shown as a function of temperature rise; the green region indicates safe P_{DLR}.
- As the uncertainty in ambient and conductor temperatures increases, the safe P_{DLR} region gets smaller.

Sample: 9 Sites

Frequency of High Risk Scenarios

Range of conditions for the 9 locations studied. Loading values are on a per subconductor basis.

Variable	Range Included within Study
Latitude	34.5-53.5 °
Cond. Type	ACSS, ACSR, ACAR, various sizes
Cond. Absorptivity / Emissivity	0.5 - 0.9
Average / Maximum Loading	$34-557\;A$ / $366-1,388\;A$
Time Period Observed	$122-348 \ days$

Data Collection OHL Monitoring

LiDAR Data Collection

Installed on Tower

Confidential and Proprietary

Accelerating the Net Zero Grid

LineVisionInc.com

in LinkedIn.com/company/LineVision

@LineVisionCo

