Detecting and Diagnosing Protection Anomalies on Distribution Systems

Contact Information

Jeffrey Wischkaemper

Associate Research Professor, Electrical and Computer Engineering, Texas A&M Engineering, jeffw@tamu.edu

Phone: +1-979-575-7213

What happens when protection fails?

- System protection is designed to prevent Bad Things™ from happening.
- Generally speaking this means means clearing faults before they cause damage to the system, though recently it has also become a focus for wildfire risk mitigation.
- Protection systems are generally reliable, but how do you know when they aren't working properly, diagnose, fix, etc.?
- Data to solve these problems is often unavailable or difficult to interpret.

- Some exceptions exist (and will be discussed), but distribution protection is generally provided by 50/51-like elements (instantaneous overcurrent and time-overcurrent), with 51-like elements (i.e. fuses) being the most common.
- A typical arrangement on a North American distribution circuit would be a reclosing circuit breaker at the substation, one or more overhead reclosers distributed along the circuit, and hundreds of fuses protecting individual loads.
- For example, a utility might have a 960/480A phase/ground pickup breaker at the substation with 200A/100A phase/ground reclosers at 3-ph tap points, with single phase laterals protected using 80A fuses and individual transformers protected using fuses ranging from 2-40A, depending on kva rating and voltage level.
- Ideally these all coordinate such that the device closest to the fault operates first, but on long or complex circuits perfect coordination is not always possible.

Protection oversight

- So again, the question is: how do you know this is working properly?
- Field anomalies
 - Coordination issues
 - Failures to operate
 - False trips
 - Bad Things™ happening
- For older equipment (e.g., hydraulic reclosers) you generally have only a trip counter.
- New equipment may have diagnostic capability, but the data you actually want may not be available.

Distribution Fault Anticipation Project

- Researchers at Texas A&M have worked for over 20 years characterizing normal and abnormal electrical events on distribution systems.
- Sensitive monitoring equipment measures substation CTs and bus PTs to detect incipient failure conditions and alert utility companies.
- As a by-product, DFA often detects failures or misoperations of system protection.

- Because most faults are believed to be temporary*, reclosers generally attempt multiple reclose operations to ensure reliable service.
- A typical scheme would be two fast trips and two slow trips, shown at right.
- * Typical cited numbers are that 95% of faults can be cleared with 3 reclosing attempts, but empirical data is old/limited to substation breakers.

- DFA has detected multiple instances of reclosers set to operate 4 times but operating more (e.g., 6 trips) before locking out.
- This behavior is difficult to diagnose because the sequence ultimately "works" but results in additional, unnecessary faults.

- What if your recloser operated 1,000 times instead of 4?
- DFA has observed multiple reclosers on ten circuits at six utility companies where reclosers operated dozen or hundreds of times over minutes or tens of minutes.
- An example from one event is shown at left.

Case #	# Auto-reclose operations without lockout	Period spanned by those pumping operations
1	800 operations	24 minutes
2	680 operations	26 minutes
3	107 operations	3 minutes
4	88 operations	2 minutes
5	140 operations	12 minutes
6	120 operations	2 minutes
7	120 operations	6 minutes
8	300 operations	14 minutes
9	740 operations	26 minutes
10	320 operations	22 minutes
11	1100 operations	33 minutes
12	73 operations	3 minutes

Cases 9 and 10, which occurred six months apart, probably involved a single recloser.

Similarly, cases lines 11 and 12, which occurred three months apart, probably involved a single recloser.

The twelve cases of pumping involved ten distinct reclosers at six distinct distribution companies.

- The table at right details a dozen cases of "pumping" reclosers.
- The exact mechanism is not known but is believed to be a failure of the lock-out mechanism in a hydraulic recloser.

- Excessive recloser operations are bad. Thousands of excessive recloser operations are very bad.
 - Prolongs safety hazards / increases ignition risk
 - Each trip/reclose causes a momentary interruption for all downstream customers
 - All upstream devices between fault and substation are subjected to electrical and thermal stresses.
 - Excessive fault current at the point of the fault increases likelihood for damage/burndown.

- Many utilities in high fire risk areas are experimenting with temporary fast-trip settings during red-flag days.
- Fast tripping combined with blocked reclosing reduces the amount of fault energy available to ignite a fire, and theoretically reduces ignition risk.
- Separately, events like incipient cable fitting failures can produce time limited (i.e., subcycle) pulses which may draw significant amounts of current, but self-clear without the operation of protective devices.
- DFA has documented multiple cases of incipient fitting failures over years with this signature.

- The combination of short, selfclearing faults with fast trip settings can create unintended outcomes.
- The graph on the right shows a self-clearing pulse from an incipient cable fitting failure.
- This event did not operate a protective device, and did not cause an outage.

- This graph, however, shows a similar pulse from the same failure event on the same circuit when fast trip settings were enabled.
- Three cycles after the fault self clears, an upstream recloser operates, interrupting approximately 1,900 customers.

- Because of the fast trip settings, the recloser initiated its trip cycle, and did not reclose, even though the fault was no longer present.
- Because the fault happened at 2330, the utility was unable to patrol the area (and hence unable to restore power) until the following morning.

- Detecting an energized conductor on the ground remains a challenging problem with difficult tradeoffs.
- Most broken conductors produce fault currents which trip protective devices, but some draw currents on the order of or less than normal system loads.
- There are inherent tradeoffs between a method's true positive rate (i.e., correctly detecting a downed conductor when there is one), its false positive rate (i.e., tripping a circuit when there was no downed conductor), and the amount of time a method waits to make a decision (more time generally produces more accurate decisions).

- Of these, the most operationally challenging has always been the false positive rate – that is to say, tripping a circuit when no fault exists.
- When developing in the 1990s: "If it false trips twice a year across our entire system, we'll turn the whole thing off."
- The potential for downed conductors to start fires has changed this calculus for some utilities, resulting in a higher tolerance for false trips.
- That said, a higher tolerance for false trips is not an infinite tolerance for false trips.

- A utility deploying downed conductor detection technology has experienced a high rate of false trips (e.g., 3-4 per week when normalized to a full deployment).
- The graph at right shows a subcycle fault with two recloser operations, the second 1.2 seconds after the first.

- The first trip was a line recloser properly clearing the fault in its zone.
- The second trip was the downed conductor detection algorithm reacting to changes in load levels after the first trip.
- The utility has used DFA data to debug multiple false trip operations and provide feedback to the vendor.

Conclusion

- The protection system is supposed to keep Bad Things™ from happening, but utilities seldom have systems that let them know when system protection is misoperating.
- Advanced data collection and analytics can allow utilities to correct or respond to protection anomalies in a more efficient manner.
- Data can also provide critical insights into the actual circuit conditions which caused a device to misoperate, avoiding assumptions and speculation.
- Multiple benefits including improved reliability, power quality, public safety, reduced ignition risk, etc.