Optimizing Substation Grounding for Distribution System Faults

2023 Cigre Grid of the Future Conference

Agenda

- Distribution fault ground potential rise (GPR) behavior
- Modeling approaches
- Results
- Conclusion

Objectives

- Understand GPR for distribution faults
- Provide guidance for analysis

Background - Fault Behavior

- Transmission faults
 - Typically remotely sourced current
 - Returns through earth and shield wires

Photo credit: Rob Schaer

- Distribution faults in substation
 - Effectively no GPR for typical delta-wye ground transformers
- Distribution faults on feeder
 - Complex behavior

Background – IEEE Std 80-2013 Guidance

 "For ground faults outside the substation on a distribution feeder (far enough to be at remote earth with respect to the ground grid), a large portion of the fault current will return to its source (the transformer neutral) via the substation grid, thus contributing to the substation GPR." (IEEE Std 80-2013)

Questions:

- What is "a large portion"?
- How much will it contribute to substation GPR?

Parametric Analysis

Parametric Analysis Intro

Variations on:

- Phase conductor
- Neutral conductor
- Pole ground conductor
- Substation size
- Distribution pole (and ground) spacing
- Fault location along a feeder
- Soil resistivity/layering

hoto credit: Rob Schaere

.

Conductors Considered

- Phase
 - #6 AWG ACSR
 - #2 AWG ACSR
 - 1/0 AWG ACSR
 - 2/0 AWG ACSR
 - 3/0 AWG ACSR
 - 336 kcmil ACSR

- Neutral and downlead
 - #6 AWG
 - #2 AWG
 - 1/0 AWG
 - 2/0 AWG
 - 3/0 AWG
 - 4/0 AWG

Final Conductors Utilized After Initial Screening

GPR Scenario	Phase Conductor	Neutral and Downlead Conductor	
Highest	Oriole (336 kcmil 30/7)	Penguin (#4/0)	
Lowest	Turkey (#6 AWG)	Turkey (#6 AWG)	

Substation and Distribution Lines Considered

- Substation
 - 100 feet by 100 feet
 - 200 feet by 200 feet
 - 500 feet by 500 feet
 - Grid for all
 - 4/0 AWG copper
 - 20-foot spacing

- Distribution Line
 - All 15,000 feet (~3 miles)
 - Faults every 1,500 feet (10%)
 - Span lengths:
 - 300 feet
 - 500 feet
 - Ground rod on each pole

Soil Models

- Two and three layers
- Various structures
- Various thicknesses

This Photo by Unknown Author is licensed under CC BY

Soil Models by GPR (high-to-low)

GPR	Soil Layer	Resistivity (Ω-m)	Thickness (ft)
Model #1	Тор	10	3
(Extreme)*	Bottom	5,000	Infinite
Model #2	Тор	10	3
	Bottom	1,000	Infinite
Model #3	Тор	1,000	3
	Middle	10	20
	Bottom	1,000	Infinite
Model #4	Тор	10	10
	Bottom	1,000	Infinite
Model #5	Тор	10	3
	Middle	1,000	20
	Bottom	10	Infinite

GPR	Soil Layer	Resistivity (Ω-m)	Thickness (ft)
Model #6	Тор	10	10
	Bottom	100	Infinite
Model #7	Тор	100	3
	Middle	10	20
	Bottom	100	Infinite
Model #8	Тор	1,000	10
	Bottom	10	Infinite
Model #9	Тор	10	3
	Middle	100	20
	Bottom	10	Infinite
Model #10	Тор	100	10
	Bottom	10	Infinite

^{*}Model 1 considered in analysis, but generally excluded in presentation results

General System Analyzed

Analyzing Faults

- 10 kV system voltage source applied at sub
 - 1 ohm system impedance (~15 MVA, 12.47 kV transformer at 7%)
 - Equals nominal 10 kA fault at the sub
 - Results are proportional to system voltage
- Line impedance (phase and neutral), pole ground, and earth path reduce current down the line
- Calculate GPR of substation

Results – Worst Soil

Large Substation Results

Medium Substation Results

Small Substation Results

Worst Soil Summary

- GPR varies from about 15-20% of the system line-to-ground voltage
- For completeness, Soil Model #1 (Extreme case) peaked at ~25%

Question: How much better can good soil be?

Results – Soil Impacts

Large Substation with Low Resistivity Soil

Small Substation with Low Resistivity Soil

Summary

- GPR for feeder faults varies from about 1-20% of the system line-to-ground voltage
- Refinement can be done for regional:
 - Soil considerations (biggest impact)
 - Higher resistivity is worse
 - Substation size (next biggest impact)
 - Smaller is worse
 - Typical distribution designs
 - Large wire, short spans are worse

Conclusion

- GPR varies from about 1-20% of the system line-to-ground voltage for distribution faults
 - Generally, substation GPR will be < 20% of system voltage for a fault on a multi-grounded neutral distribution system
 - Example: 12.47 kV delta-wye ground transformer
 - $-12.47 \text{ kV} / \sqrt{3} \times 20\% = 1,440 \text{ V max GPR}$
 - If transmission GPR is significantly higher, easy to ignore distribution faults
 - Don't forget clearing time though!

Questions?

Ryan Conger, Rob Schaerer, Josh Brown POWER Engineers

Aaron Wilson, Xcel Energy

