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SUMMARY 

Inverter-Based Resources (IBRs) are becoming more prevalent as the penetration of renewable 

generation continues to increase. With limited reactive capability and reduced inertia, renewable units 

introduce new challenges to today’s power grid. With power electronics participating, system behaviors 

under faults slip into an unknown region, where adequate data are yet to be collected and proper 

standards are yet to be enacted. American Electric Power (AEP), as a transmission operator who doesn’t 

dispatch generation from independent power providers, witnesses increasing uncertainty in system 

dynamic behavior as IBR integration trends upward. Therefore, it becomes increasingly imperative to 

monitor IBR response in states of system stress. Hence, with the purpose to enhance situational 

awareness and facilitate planning and regulatory actions, this paper proposes a framework for 

identification of moments of system stress and subsequent analysis, evaluation, and profiling of IBR 

dynamic performance.  

With core structure consisting of a data-driven classification model, this framework cross references 

multiple data sources to identify and classify forced outage events, where system integrity is disrupted 

and operating limits of nearby IBRs can be tested. Fed from events generated and filtered by heuristically 

trained alarms watching rate of change on key system features, the classification model evolves to a 27-

node decision tree with binomial targets addressing outage detection and categorization simultaneously. 

With the decision tree calibrated to desired precision via the Gini Impurity measure, system outages are 

captured and dynamic performances of nearby IBRs are swept for analysis.  

Responses of IBRs are sorted by tracking the changes in generation immediately following an 

outage. Taking advantage of a python-based Graphic User Interface (GUI), dynamic responses of 

renewable units can be visualized and evaluated against existing IEEE standards and corporate 

integration agreements. Reliability profiles will be stablished where units responding positively in 

alleviating system stress shall be categorized as a source of support while their peers who failed to live 

up to integration agreements will be marked for future actions. 

 Configured and integrated in AEP since May 2023, the proposed multi-source framework reports 

100 percent accuracy in outage identification and 94.5% accuracy in outage classification. With the 

purpose to achieve versatility, it continues to evolve with new data streamed in daily. Archives of IBR 

responses to outages are hence collected accordingly. As a consequence, unit profiles aggregate and will 

eventually propagate to all IBR units interconnected into AEP’s transmission systems. Practicing a data 

 

 

21, rue d’Artois, F-75008 PARIS CIGRE US National Committee 

http : //www.cigre.org  2023 Grid of the Future Symposium         



  1 

 

driven ideology, those profiles generalize dynamic characteristics of renewable resources. They will 

provide operators and engineers with intuitive understanding of unit potentials and possible impacts on 

the system. Eventually, those IBR profiles will serve both operation and planning departments and 

facilitate the enactment of new standards and agreements to enhance grid resilience against increasing 

renewable impacts in future power systems.  
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1. Introduction 

With a rapid increase of renewable penetration in US power grids, more and more IBRs participate 

in grid operation. Currently, in Electricity Reliability Council of Texas (ERCOT)’s territory, renewables 

comprise approximately 30-45% of the total capacity on a given day [1]. Due to limitation in reactive 

capability and inertial response, renewable units bring uncertainty to power grids, particularly when 

systems are under stress [2]. Though equipped with capacitor banks and voltage regulators, IBR’s 

response to system faults and equipment outages remains unpredictable, hindering situational awareness 

and sabotaging grid resilience. Therefore, it is essential to establish a mechanism where IBR’s 

performance during system stress can be monitored, reported, and archived for future analysis.  

Utilization of measurements to create a generator health profile has been explored for traditional 

generators [3,4], where sensors were deployed on the units to connect data reflecting electrical and 

physical characteristics. While the health profile provided a great reference for maintenance and 

replacement schedules, real-time performances of those units are yet to be explored from operation’s 

point of view to ensure proper control schemes against potential instabilities. Supervisory Control and 

Data Acquisition (SCADA) data were utilized to remotely monitor the condition of wind turbines [5].  

However, performance under system disturbances were not captured due to low sampling rate of 

SCADA measurement, leaving dynamic monitoring and reporting of IBRs incomplete.  

Previous researchers have brought insights on tools and methods for fault diagnosis [6,7], where 

multiple data sources were queried and machine learning based algorithms were used. Nevertheless, due 

to limited renewable integration back then, IBRs’ influences on system dynamic behaviors were 

negligible. Therefore, events suitable for testing IBR dynamic capability were not identified and RES 

unit behaviors under stress were not investigated nor evaluated. With increasing renewable penetration 

pushing transmission operation to newer limits today, fault detection and diagnosis shall be carried out 

with knowledges of impacts brought by IBRs.   

AEP operates the nation’s largest transmission system that absorbs over 1.9 GW of inverter-based 

generation [8]. Large amounts of power input from IBRs leads to increasing unpredictability concerning 

system behaviors in AEP’s footprints, such as oscillations, delayed fault recoveries and even unplanned 

outages caused by lack of inertial response or reactive support. Monitoring, evaluating and documenting 

IBR performance, particularly under system stress, has hence been deemed highly necessary from both 

operation and planning perspectives. Fortunately, with over 500 PMUs deployed in its three footprints 

including ERCOT, Southwest Power Pool (SPP), and PJM, AEP benefits from a wide area PMU-based 

monitoring system that oversees Point of Interconnections (POI) of many IBRs, as shown in Figure 1. 

 
Figure 1 - PMU Monitored Substations of AEP 
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Taking advantage of the high-resolution observability enabled by PMUs, researchers at AEP have 

already developed measurement-based method to detect system oscillations [9]. To expand the scope of 

event detection and further extend the effort to enhance situational awareness and enrich operation 

knowledge, a multi-source event management framework is proposed. This framework automates 

detection and classification of critical events that disrupt system integrity and challenge IBR stability. 

IBR responses to those events are then recorded for evaluation. Reliability profiles for renewable units 

can hence be built to counter uncertainties introduced by renewables and enhance grid resilience.      

 

2. Architecture 

    The multi-source framework is designed to capture and categorize system disturbances as well as 

report and profile IBR responses. Currently, we focus on disturbances that force permanent equipment 

outages as the loss of devices presents a concerning situation where operating limits of nearby IBRs are 

challenged. The framework feeds in information from three sources: a vendor supplied PMU 

application, an outage data repository, and a relay sequence data repository. The architecture of the 

proposed framework is displayed in Figure 2.  

 
Figure 2 – Architecture of the Multi-Source Event Management Framework 

As shown in Figure 2, cross referenced with three inputs, outage detection is carried out to identify 

system disturbances ideal for analyzing nearby IBR responses. The proposed framework is then 

completed with IBR response reporting and RES performance evaluation. Behaviors of units will be 

benchmarked with the IEEE standard concerning Interconnection of IBRs [10] and an internal renewable 

rating document [11], where interconnection requirements on real and reactive capability are detailed.  

 

3. Methodology 

    To establish the proposed multi-source framework, real-time observations provided by PMUs as well 

as historical event data logged by outage and relay sequence repositories are both used to formulate the 

input and target of a decision tree-based event identification and classification model. The model is then 

refined and yields event notifications and characterizations that are adequately accurate for RES 

response evaluation and profiling.  

A. Formulation 

    In order to generate an accurate model for outage detection and classification, system conditions must 

be generalized and parameterized as inputs to model learning [12]. To sufficiently include dynamic 

features of a disturbance in model refining, absolute differences of pre and post fault features as well as 

Rate of Changes (ROC) during faults are used to formulate the input array.  
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    AEP’s existing wide-area monitoring system (WAMS) detects approximate event time 

𝑡𝑖
𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 using empirical ROC alarms, which are triggered instantly when ROC values touch the lowest 

threshold. To find the exact event time 𝑡𝑖
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑, locations and timestamps of observations reflecting 

the maximum ROC values are sought via (1)-(6), where a rolling window analysis is carried out with 

500 samples timestamped before and after  𝑡𝑖
𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 are screened: 

 

𝑉𝑖
𝐻̅̅ ̅̅ = {𝑉𝑖−𝐻, 𝑉𝑖−𝐻+1, … , 𝑉𝑖+𝐻}     (1) 

𝑉𝑅𝑂𝐶𝑖

1𝑠 = |𝑉𝑖 − 𝑉𝑖+30|      (2) 

𝑉𝑅𝑂𝐶
1𝑠 =  𝑚𝑎𝑥

𝑖−𝐻≤𝑛≤𝑖+𝐻
{𝑉𝑅𝑂𝐶𝑛

1𝑠 }     (3) 

    As H=500, 𝑉𝑖
𝐻̅̅ ̅̅  hosts one thousand and one voltage observations surrounding detected event 

time with 𝑉𝑖 timestamped at 𝑡𝑖
𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑. Using a window length of one second that hosts 30 samples, 

absolute difference reported between the first samples of two consecutive windows are then calculated 

to obtain instantaneous voltage ROC 𝑉𝑅𝑂𝐶𝑖

1𝑠  at 𝑡𝑖
𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑. With observation window moving through 

𝑉𝑖
𝐻̅̅ ̅̅ , a series of 𝑉𝑅𝑂𝐶𝑛

1𝑠  will be computed. The final ROC concerning voltage is represented as 𝑉𝑅𝑂𝐶
1𝑠 . It 

equals the numerical maximum of 𝑉𝑅𝑂𝐶𝑛

1𝑠 .  

    Similarly, 𝑓𝑅𝑂𝐶
1𝑠  and 𝑃%𝑅𝑂𝐶

1𝑠  represent rates of change concerning frequency and active power 

respectively. They are derived via the same rolling window method with 𝑃%𝑅𝑂𝐶
1𝑠  processed by an 

additional division step to obtain the percent change: 

 

𝑓𝑅𝑂𝐶
1𝑠 =  𝑚𝑎𝑥

𝑖−𝐻≤𝑛≤𝑖+𝐻
{𝑓𝑅𝑂𝐶𝑛

1𝑠 }     (4) 

𝑃%𝑅𝑂𝐶𝑖

1𝑠 =  |
𝑃𝑖−𝑃𝑖+30

𝑃𝑖
|                           (5) 

𝑃%𝑅𝑂𝐶
1𝑠 =  𝑚𝑎𝑥

𝑖−𝐻≤𝑛≤𝑖+𝐻
{𝑃%𝑅𝑂𝐶𝑛

1𝑠 }    (6) 

    Timestamps of 𝑉𝑅𝑂𝐶
1𝑠 , 𝑓𝑅𝑂𝐶

1𝑠 , and 𝑃%𝑅𝑂𝐶
1𝑠  mark the corrected event time 𝑡𝑖

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑. Since topology 

information constitutes part of PMU names, signals reporting alarming ROC values pinpoint event 

locations as well. With 𝑡 = 𝑡𝑖
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑, input variables concerning pre and post event system conditions 

are formulated as: 

 𝛥𝑉𝐹𝑎𝑢𝑙𝑡 = 𝑉𝑡0
− 𝑉𝑡−1

      (7) 

 𝛥𝑃%𝐹𝑎𝑢𝑙𝑡 =
𝑃𝑡0−𝑃𝑡−1

𝑃𝑡−1

         (8) 

𝛥𝑃%𝑃𝑜𝑠𝑡 𝐹𝑎𝑢𝑙𝑡 =
𝑃𝑡1−𝑃𝑡−1

𝑃𝑡−1

     (9) 

  𝛥𝑃%𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 =
𝑃𝑡2−𝑃𝑡−1

𝑃𝑡−1

     (10) 

Where 𝑉𝑡−1
  and 𝑃𝑡−1

  are pre-fault voltage and active power, 𝑉𝑡0
 and 𝑃𝑡0

represent system features 

immediately after faults,  𝑃𝑡1
and 𝑃𝑡2

 denote short-term and long-term post-fault active power 

respectively. Here, Δ𝑉𝐹𝑎𝑢𝑙𝑡 and  Δ𝑃%𝐹𝑎𝑢𝑙𝑡 indicate the severity of the fault, while  Δ𝑃%𝑃𝑜𝑠𝑡 𝐹𝑎𝑢𝑙𝑡 and 

Δ𝑃%𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 differentiate permanent outages from temporary ones. Pre and post fault change on voltage 

and active power, together with their ROC thresholds, form the input array. Referred to as 𝑋𝐷𝑇, The 

input array summarizes grid conditions before, during, and post disturbances.   

 

 𝑋𝐷𝑇 =  [𝛥𝑉𝐹𝑎𝑢𝑙𝑡, 𝛥𝑃𝐹𝑎𝑢𝑙𝑡 , 𝛥𝑃𝑃𝑜𝑠𝑡 𝐹𝑎𝑢𝑙𝑡 , 𝛥𝑃𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 , 𝑉1𝑠 𝑅𝑂𝐶 , 𝑓1𝑠 𝑅𝑂𝐶 , 𝑃1𝑠 %𝐶ℎ𝑎𝑛𝑔𝑒]  (11) 

B. Training 

    A Gini Impurity Based Classification Tree [13] is built and trained to create the model for event 

identification and characterization.  The training starts with initialization of ROC thresholds to bypass 

benign system fluctuations. The initialized thresholds are listed in Table 1: 
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Table 1 - Initial Thresholds 

𝑉𝑅𝑂𝐶
𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

. 05
𝑃𝑈

𝑠
 

𝑃%𝑅𝑂𝐶
𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 10% 𝐶ℎ𝑎𝑛𝑔𝑒

𝑠
  

𝑓𝑅𝑂𝐶
𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

. 5
𝐻𝑧

𝑠
 

 

With initialized ROC thresholds, system disturbances flagged by empirical ROC alarms are filtered, 

however, not all filtered events are equipment outages. Using 𝐸𝐼 to denote all events flagged by 

empirical alarms, 𝐸𝐶 and 𝐸𝑁𝐴 are subsets of 𝐸𝐼 as they represent outage and non-outage events 

respectively. With 𝐸𝑈𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 referring to missed outage events, different sets of events exhibit 

relationships depicted as (12) and (13).  

 
𝐸𝐼 ≡ 𝐸𝐶  ∪ 𝐸𝑁𝐴      (12) 
𝐸𝑂𝑢𝑡𝑎𝑔𝑒 ≡ 𝐸𝐶  ∪ 𝐸𝑈𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑     (13) 

 
With 𝑋𝐷𝑇 as an input array, the Gini Impurity based classification tree aims to capture all ‘severe’ 

events that force equipment outages as well as classifying them based on event causes and outage types. 

Supplying outage characteristics and incidence causes as part of the objective functions, AEP’s outage 

repository and relay sequence logs are constantly scanned during the learning procedure to cross 

reference events filtered via ROC alarms and provide feedback to model training. Thresholds defining 

ROC alarms will be heuristically adjusted until 𝐸𝑂𝑢𝑡𝑎𝑔𝑒 equals to 𝐸𝐶. As a result, 𝐸𝑈𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 becomes 

an empty set.  

Aiming for detection as well as classification, a weighted Gini index is computed for each variable 

in the input array to decide the optimal split at each node.  Consequently, the decision tree evolves to a 

binominal target model. Its training is completed by adopting the python’s scikit-learn package [14], 

where the procedure is elaborated in Figure 3. Sampling data is split into training and testing subsets.  

The classification tree is calibrated with the training set and validated with the testing one.    

Event 

Data

EI 

(Input 

Events)

Test Data
Training 

Data

Decision 

Tree 

Training

Decision 

Tree Model

Event 

Classification

Outage Repository

Input Variables Objective Functions
EUndetected = 0

y = Outage Characterizations

Relay Sequence 

Log

Decision 

Tree 

Validation

T

Discard 

Event

F

f1s ROC >

P1s ROC > 

V1s ROC >

 
Figure 3 - Filtering and Decision Tree Structure 

C. Reporting 
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    Following outage detection and classification, renewable units within proximity of detected outages 

are swept and analyzed using a similar rolling window method as described in (1)-(2). Event induced 

changes in RES outputs are measured using 𝑃̅𝑅𝑂𝐶
1𝑠   and 𝑄̅𝑅𝑂𝐶

1𝑠 , which are average rate of change 

concerning real and reactive power in response to outages. With 𝐽 = 150, three hundred observations 

surrounding  𝑡𝑖
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑  are scrutinized as formulated in (16) and (19). Responses are then sorted 

accordingly based on unit average ROC concerning real and reactive outputs. The sweeping and 

reporting procedure of RES responses is visualized in Figure 4.  

 

𝑃𝑅𝑂𝐶𝑖−𝐽

1𝑠 =  |𝑃𝑖−𝐽 − 𝑃𝑖−𝐽+30|     (14) 

                                                       𝑃𝑅𝑂𝐶
1𝑠 =  {𝑃𝑅𝑂𝐶𝑖−𝐽

1𝑠 , 𝑃𝑅𝑂𝐶𝑖−𝐽+1

1𝑠 , … , 𝑃𝑅𝑂𝐶𝑖+𝐽

1𝑠 }                             (15) 

𝑃̅𝑅𝑂𝐶
1𝑠 =

∑ 𝑃𝑅𝑂C
1𝑠𝑖+𝐽

𝑖−𝐽

2𝐽
      (16) 

𝑄𝑅𝑂𝐶𝑖−𝐽

1𝑠 =  |𝑄𝑖−𝐽 − 𝑄𝑖−𝐽+30|     (17) 

𝑄𝑅𝑂𝐶
1𝑠 =  {𝑄𝑅𝑂𝐶𝑖−𝐽

1𝑠 , 𝑄𝑅𝑂𝐶𝑖−𝐽+1

1𝑠 , … , 𝑄𝑅𝑂𝐶𝑖+𝐽

1𝑠 }   (18) 

𝑄̅𝑅𝑂𝐶
1𝑠 =

∑ 𝑄𝑅𝑂𝐶
1𝑠𝑖+𝐽

𝑖−𝐽

2𝐽
                              (19) 

Event Capture
RES Response 

Sorting and 
Aggregation

Ranked List of 

RES Responses

RES Response 
Sweep

 
Figure 4 - Fetching RES Responses 

Following unit sweeping, profiles for each renewable are manually built to include: 

• Archival of event data for future references and studies 

• Plots of RES responses for evaluation of unit dynamic performance 

• Operating power factor vs. rated power factor at different ratings to benchmark RES active 

and reactive capability with standards and integration requirements.  

 

4. Implementation 

    

    The proposed framework incorporates a vendor-supplied PMU WAMS software, where real-time 

ROC events triggered by empirical alarms are streamed to the Gini Impurity based classification tree. 

With model training completed, the classification tree memorizes its targets and generates desired 

outcomes with inputs concerning static and dynamic grid conditions.  
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WAMS Software P 
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Discard event
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Evaluation 

Against 

Integration 

Agreement

Archive 

Responses into 

RES Profiles

Input Array: XDT

Sweep for Nearby RESsDecision Tree Model

Sort RES Responses by:

Planning and 

Regulatory 

Decisions

Identified and 

Classified Events

 
Figure 5 – Implementation Procedure 
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    The implementation of the proposed framework is divided into 3 subprocesses as shown in Figure 5: 

1. Mass Event Filtering –System fluctuations marked by empirical ROC alarms over a 30-

day period are gathered, grouped, and filtered to reduce the dimension of the input array and 

suppress perturbations to the framework.  

2. Decision Tree Based Outage Detection and Classification –The input array consisting of 

ROCs and pre/post fault changes is fed into a well-tuned decision tree, which identifies 

disturbances that force permanent outages. Those disturbances are classified using a list of 

event causes including lightning, tornado, line overheat, and so on.  

3. RES Response Sweep and Evaluation – Dynamic responses from RESs near identified 

outages are swept, analyzed, and sorted. With a python-based GUI producing time domain 

plots as shown in figure 6, each RES’s capability in providing real and reactive power 

support to mitigate system stress is scrutinized. Profiles characterizing their dynamic 

performances will hence be built to justify planning and regulatory actions. 

 

 
Figure 6 - Renewable Response Decision GUI 

    Since the decision tree is trained offline with multiple databases calibrating its output, it delivers 

decent accuracy in terms of outage detection and classification. By design, cross references with outage 

repository and relay sequence logs shall no longer be necessary once training is finalized with adequate 

thoroughness and diversification. The calibrated decision tree shall then work on its own to realize and 

maintain desired precision despite evolving system conditions. This ideology is purely data-driven, it 

reduces communication effort and simplifies process flow, equipping the proposed framework with real-

time adaptability. 

 

5. Performance Evaluation 

 

The performance of the proposed multi-source framework was evaluated via validating outputs from 

the decision tree as well as analyzing the captured RES responses. Though preliminary, the latter 

demonstrated functionality of the proposed framework.   

 

A. Decision Tree Model Validation 

Over a period of 30 days, 486 events prefiltered from 33,585 empirical ROC-based notifications 

were fed into the binomial target decision tree. Out of which 340 events were used for learning and the 

rest used for testing. The calibrated classification model eventually grew to be a 27-node decision tree 
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It successfully flagged 32 PMUs reflecting all 6 outages blended in with non-outage disturbances in the 

event cluster created for testing, yielding 100 percent accuracy concerning outage identification.  

  
Figure 7 – Decision Tree Model Validation 

As for outage classification, four different outage causes (Tornado, Lightning, Line Overheat, 

Other) plus five different outage types (manual, forced, temporary, permanent, non-outage) created 20 

possible combinations for each of the 146 events clustered for testing. The finalized decision tree 

delivered the correct combination for 138 out of 146 events, indicating 94.5% accuracy. A visualization 

of the 27-node decision tree is displayed as Figure 10 in the appendix. 

B. IBR Responses 

The 6 outage instances had in total 8 renewable responses observed by PMUs at or next to their 

POIs. In this round of outage detection and RES evaluation, no renewable units were seen operating at 

or above their max P or Q capacity nor operating at below 10% of their real power capability. With no 

extreme case presenting, the responses were split into “P Support” and “Q Support” categories in Table 

2. The magnitude of each response was recorded along with the event location in Table 3. 

 

Table 2 - Event Renewable Responses 

Event Number of 

PMUs Flagged 
Highest 𝑽𝑹𝑶𝑪

𝟏𝒔  

Captured at PMU# 

Responses Event 

Classification 

1 2 10038 2 P Support, 1 Q Support Tornado 

2 2 10075 1 P Support Lightning 

3 1 11050 None Lightning 

4 2 10060 1 P Support Lightning 

5 2 11130 1 Q Support Other 

6 23 10042 2 P Support Line Overheat 
 

Table 3 - RES Response Summary 

Response (PMU ID) Category – Description Machine Type Min. 

PF 

Event 1 – 1 (10059) P Support – 21.4MW increase Wind – Type 

Unknown 

.98 

Event 1 – 2 (10086) operating at 

~95% 

P Support – 13.6MW increase Wind – Type 3 .96 

Event 1 – 3 (11051) operating at 

~60% 

Q Support – 45.1MVAR increase Wind – Type 3 .45 

Event 2 – 1 (11054) operating at 

~50% 

P Support – 9.7MW increase Wind – Type 

Unknown 

.99 

Event 4 – 1 (11051) operating at 

~50% 

P Support – 22.1MW increase Wind – Type 3 .91 

Event 5 – 1 (11160) operating at 

~80% 

Q Support – 6.4 MVAR increase Wind – Type 3 .93 

Event 6 – 1 (10059) P Support – 250 MW increase Wind – Type 

Unknown 

1 

Event 6 – 2 (11051) operating at 40% P Support – 24.5 MW increase Wind – Type 3 .8 
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    Though only required to provide limited reactive support corresponding to ±0.95 power factor at POI, 

the wind farm observed by PMU #11051 demonstrates capability to operate and interconnect at a much 

lower power factor when necessary, providing more dynamic support to transmission grids compared 

with other wind units powered by doubly fed asynchronous turbines. This RES is hence profiled as a 

potential reactive resource for AEP’s ERCOT system. Its responses to Event 1 and 6 are plotted in 

Figures 8 and 9 respectively.  

 
Figure 8 - Event 1 Response - PMU 11051 

 
Figure 9 - Event 6 Response - PMU 11051 

Event 1 was caused by a tornado that took out a 69kV line for approximately 62 hours. While the 

wind farm observed by PMU 11051 is located further from the event than other renewable resources 

and traditional generators, it increased reactive output by 45.1 MVAR within 5 minutes, stabilizing 

voltages in affected area and demonstrating promising Automatic Voltage Control (AVR) functions. 

Event 6 was caused by a line overheat that put a major 345kV line out of service for over 26 hours. With 

a critical path to generation out, the wind farm observed by PMU 11051 ramped up active power output 

to 105 MW in less than a minute following the line outage, adding 13% of its capacity to compensate 

for loss of generations and demonstrating resilience under stressed situations. Hereby, this wind farm is 

archived as a reliable IBR to facilitate operation and planning actions.  

6. Conclusion 

This paper established a multi-source framework for outage detection, classification and RES 

response evaluation. With a binomial target decision tree serving as its core feature. The framework 

demonstrates promising performance where 100 percent accuracy in outage detection and 94.5% 

accuracy in outage classification can be achieved.  As a result, the proposed framework demonstrates 

ability to capture severe disturbances in real time with dynamic responses from nearby IBRs monitored, 

evaluated, and archived. Reliability profiles can hence be established for multiple IBRs where potential 

sources of support or troublemakers can be identified to enrich control room knowledge and provide 
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reference for planning and regulatory actions. The contribution of the paper can be summarized as 

below: 

1. Building and calibration of a binomial target classification model with real-time adaptability to 

realize fast and accurate outage detection and categorization.  

2. Establishing a multi-source framework to automate IBR dynamic response monitoring, 

reporting, and reliability profiling.   

3. Proposal of a data-driven ideology to generalize RES dynamic characteristics, supplementing 

control room knowledge, and facilitating long term actions to enforce grid resilience.  

With event data queried and streamed to the multi-source framework on a daily basis, the decision-

tree-based outage identification and classification model will continue its evolvement to achieve 

versatility. Meanwhile, the archival of IBR responses will continue to aggregate. Reliability analysis 

and profiling will eventually propagate to all RES units interconnected to AEP’s transmission system. 

Those profiles will benefit system operation and planning, as well as facilitate the enactment of new 

interconnection standards accommodating a future grid with increasing renewable penetration. 

 

7. Appendix 

 

A visual representation of the selected decision tree is depicted in Figure 10. Characteristic splitting 

features, Gini Impurity values, number of samples, feature variable values, and deciding classes are 

displayed at each node. 

 Figure 10 – Decision Tree Visualization 
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