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SUMMARY 

 
To overcome the drawbacks of the existing post-mortem inertia estimation approaches, this paper 

proposes an innovative algorithm for online ambient data-based regional inertia estimation. Inputs of 

the algorithm are the PMU measurements of tie line powers, locations of the machines inside the region 

of interest, available frequencies, and voltages, as well as the network admittance matrix. By utilizing 

voltage measurements, the algorithm estimates the load power response and subsequently determines 

the regional total import/export active power. Moreover, an aggregate acceleration power Δ𝑃̂ is 

estimated using an aggregate governor model. The dynamic states of rotor speeds are derived from the 

available frequencies, and a regional equivalent rotor speed, denoted as 𝜔̂𝐶𝑂𝐼, is calculated. Estimated 

quantities are processed through a sliding window with controlled length, resulting in a sequence of 

inertia estimates. Each sliding window trains a transfer function model using system identification 

technique, which governs the relationship between Δ𝑃̂ and 𝜔̂𝐶𝑂𝐼, to estimate a potential value for inertia. 

Various estimated values are validated and combined to obtain a final estimate. The algorithm 

performance has been evaluated using ambient data from the 2000-bus synthetic Texas grid model. The 

results demonstrate robust behaviour across different case studies.  
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1. Introduction 

As utilities are transitioning towards a low-carbon future, there are increased concerns around system 

reliability, especially frequency security, which is a key component of reliable system operation. With 

the increasing penetration of inverter-based resources (IBRs) that continue to displace conventional 

synchronous machines, the overall system inertia is reduced, and this directly impacts the rate of change 

of frequency (ROCOF) that the power system is exposed to immediately following a disturbance. Higher 

ROCOF allows less time for frequency response services to act and hence threatens frequency load 

shedding (UFLS) or in more severe cases, system separation. Utilities worldwide have established 

planning procedures and operational constraints in the form of ROCOF constraints or critical inertia 

floors to accommodate existing equipment withstand and available reserve capabilities. 

In this context, utilities monitor system inertia in their control rooms in real-time and look at forecasts. 

Estimating or measuring inertia accurately in real-time allows system operators to manage the grid and 

efficiently procure frequency response services. However, most of the control room inertia monitoring 

at this time is based on online EMS telemetered generating stations where the system inertia is the sum 

of the inertia of the machines that are synchronized at a specific time instant. Estimates from EMS-

monitored generation do not account for the demand side inertia contribution from large industrial loads 

and demand side generation (e.g., embedded synchronous generation; combined heat and power plants 

that are not monitored in the EMS). In some cases, as in National Grid in Great Britain, this contribution 

has been found to be substantial, where the demand has been found to have an inertia constant of 1.832s 

[1]. Moreover, island systems like EirGrid in Ireland have registered high variability at daily and hourly 

demand side contribution to inertia [2].  

In the context of the non-uniform expansion of IBRs, further concerns arise over regional inertia pockets, 

inertia centers separated by weak transmission lines. In such a scenario, the single-frequency models 

that many utilities still use for certain security assessments may no longer hold valid [1]. Considering 

these concerns, accurate real-time inertia estimation has gained significant interest in recent literature.  

Current industry practices and the latest inertia monitoring and estimation research have been 

summarized in [3]. Inertia estimation techniques can be broadly divided into large event-based 

techniques, which rely on large system events and can only be used for validation as postmortem [4], 

and wide area measurement-based techniques, which operate online based on ambient variations [5] or 

depend upon a modulated signal that is injected into the system [6]. In [7], event data is used for system 

inertia estimation, and the performance of inertia estimation for three different C37.118 compliant 

phasor measurement units (PMUs) are compared and found to be sufficient to support inertia estimation. 

In [8], system inertia is estimated based on outage scenarios using dynamic regressor extension and 

mixing. In [9], an autoregressive moving average exogenous input (ARMAX) model is used to estimate 

system inertia using PMU data and in [5], ARMAX models are used to estimate regional inertia. In [10], 

an alternative method that uses ambient data to estimate the regional concentration of inertia is 

presented. Furthermore, a continuous area-inertia measurement approach, capable of measuring area 

inertia and its implementation in the GB system, is discussed in [11].  

This paper proposes a novel algorithm for application in real-time inertia estimation using ambient data. 

The method can be used for both system level and regional inertia estimation, where regional inertia 

refers to the cumulative contribution from a group of tightly coupled generators in a portion of the 

network that is weakly coupled to the rest of the system. The method is based on training a sequence of 

ARMAX models using estimated total import/export electrical power to/from the region, estimated 

governor response using an aggregate governor model, and calculated equivalent regional rotor speed 

from the available PMU frequencies. The proposed method requires notably fewer ARMAX models 

than [5] and the testing presented here indicates that it is far less sensitive to its parameterization than 

the method presented in [12]. Multiple case studies are performed to demonstrate the method 

effectiveness, and the proposed method is tested under different operating conditions.  

This paper is structured as follows, Section II outlines the proposed algorithm and illustrates its different 

components, a case study is presented in Section III where results are discussed. Finally, Section VI 

concludes the paper. 
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2. Proposed Approach 

This section illustrates how the proposed approach uses the available synchrophasor measurements to 

estimate the regional inertia. A general framework of the proposed approach is presented in Figure 1. 

The figure depicts the inputs to the algorithm, the estimated inertia as an output, and the processes 

embedded in between, including a load response estimator, governor response estimator, a rotor speed 

estimator, and an ARMAX model identification of the swing equation.  

 
Figure 1. An overview of the proposed approach 

2.1. Overview 

The proposed method is an ambient data-based framework that can identify an equivalent swing 

equation for a sliding time window, as shown in Figure 2 and (1).  An ARMAX system identification 

(ARMAX-SID) is used to define the underlying dynamics between the active power imbalance (Δ𝑃) 

and the regional equivalent rotor speed (𝜔𝐶𝑂𝐼).  

 
Figure 2. Equivalent swing equation 

2𝐻
𝑑

𝑑𝑡
𝜔̂𝐶𝑂𝐼 = 𝑃̂𝑚(𝑡) − 𝑃𝑡𝑖𝑒(𝑡) − 𝑃̂𝑙(𝑡) (1) 

where 𝑃𝑚(𝑡) denotes the mechanical power, 𝑃𝑡𝑖𝑒(𝑡) denotes the tie line powers imported/exported 

to/from the region, and 𝑃𝑙(𝑡) denotes the region load power. 𝑃𝑡𝑖𝑒(𝑡) + 𝑃𝑙(𝑡) represents 𝑃𝑒(𝑡).  

Unlike the tie line power, mechanical power cannot be measured, and the frequency responses to load 

noise/variations and distributed energy resources (DERs) uncertainties need to be estimated. This is 

done through a regional-level aggregate governor model where the estimation sensitivity to the model 

parameters is studied and the calculated Δ𝑃̂ is exported to the ARMAX-SID. Moreover, the regional-

level equivalent rotor speed (𝜔𝐶𝑂𝐼) is calculated from a set of actual/virtual rotor speeds that need to be 

estimated. 

The ambient data measured by PMU devices inside the region and on the tie-lines connecting it to the 

rest of the system are the inputs of the algorithm. Network data specifying a certain topology is also 

required for the estimation processes. The former is a limited set of the available frequency and voltage 

measurements in substations within the region of interest and a complete set of active power 

measurements from the boundary tie lines importing/exporting electrical power to/from it. While the 

latter includes the network admittance matrix, location of PMUs, location of the generation devices, an 



  4 

 

approximate estimation of the aggregate load power in 𝑀𝑉𝐴 inside the region, and aggregate governor 

model parameters, i.e., the installed capacity, an equivalent droop constant, and a dead-band if exists.  

2.2. Estimation of equivalent regional rotor speed 

For accurate inertia estimation, it is required to estimate the actual rotor speeds of the connected 

synchronous machines inside the study region or alternatively monitor/estimate the frequency at the 

point of interconnection of a non-synchronous device to its terminal bus and estimate its equivalent 

internal frequency (virtual rotor speed). Once the actual/virtual rotor speeds are estimated, an equivalent 

regional rotor speed  𝜔̂𝐶𝑂𝐼 is calculated. This 𝜔̂𝐶𝑂𝐼 is different from the COI frequency traditionally 

used in literature from the perspective that the traditional arithmetic mean of rotor speeds does not 

account for local frequency oscillations which are captured by our estimated equivalent 𝜔̂𝐶𝑂𝐼. This 

guarantee capturing the frequency regulation from all connected generation devices or flexible loads 

and avoids the inertia estimation errors resulting from using frequencies instead of directly using 

frequencies for the estimation process. Since rotor speeds cannot be measured, a dynamic state 

estimation is implemented to get the rotor speeds from the network frequencies.  

For this purpose, the algorithm implements a must-monitor/estimate bus locator to identify effective 

local points in the network where frequencies must be monitored with PMUs. However, since the 

measurement data is only a limited set of network frequencies, the algorithm implements a frequency 

divider formula (FDF), proposed by [13], to first estimate the required missing frequencies (if not 

already monitored by PMUs), and then estimate the actual/virtual rotor speeds of the connected 

synchronous/non-synchronous devices. 

The must-monitor/estimate bus locator utilizes the connectivity of the network, i.e., the connectivity of 

generation devices to the network using the topology information represented by the admittance network 

𝑌𝑏𝑢𝑠 and the location of the generation devices. The required unmonitored frequencies along with the 

rotor speeds are estimated using the FDF which is discussed below. 

The basic idea behind the FDF is considering the transmission system as a continuum [14] where the 

frequency changes at each point along the lines with some boundary conditions that must be satisfied. 

These frequency changes are governed by a divider formula like voltages and currents divider formulas. 

The boundary conditions that must be met by the frequency variation along the lines are the internal 

frequencies of the generation devices/DERs/flexible loads behind an equivalent transient reactance. The 

derivation from principles starts from how the current injections and bus voltages are linked through the 

admittance matrix of the network. This is the reason why the operator needs the knowledge of 𝑌𝑏𝑢𝑠 at a 

certain topology and keep it updated after topology changes. However, the scope of this paper is the 

ambient data-based inertia estimation so the assumption of having 𝑌𝑏𝑢𝑠 reasonable. The detailed 

analytical derivation can be found in [13] and [15], while here we directly implement the FDF with 

discussing in detail the modification we made for our application. 

To clarify the concept, consider Figure 3 where a synchronous machine 𝐺𝑖 is represented by an electro 

motive force (emf) with an internal frequency 𝜔𝐺𝑖
 behind a transient reactance 𝑥𝑑𝑖

′  which connects it to 

a low voltage terminal bus 𝐵𝐺𝑖. Note that the internal frequency (rotor speed 𝜔𝐺𝑖
) and, most probably, 

the low voltage terminal bus frequency 𝑓𝐵𝐺𝑖
 are not monitored and must be estimated. Further, the low 

voltage terminal bus is connected to a monitored, as an assumption, high voltage bus with frequency 

𝑓𝐵𝐺𝑖

ℎ𝑣  which in turn is connected to monitored buses with frequencies 𝑓𝐵1
, 𝑓𝐵2

, …, 𝑓𝐵𝑘
. In Figure 3, 

frequencies at blue coloured buses are assumed to be monitored while those of the black coloured buses 

are unmonitored and hence need to be estimated. The must-monitor/estimate bus locator determines the 

required buses using the admittance matrix which gives information about the connectivity of the 

generation device and its terminal buses.  
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Figure 3. Clarification of the FDF concept with a general configuration  

Assuming that 𝑦𝐵𝐺𝑖

ℎ𝑣 = 𝑦1 + 𝑦2 + ⋯ + 𝑦𝑘 + 𝑦𝑡𝑟𝑖
, i.e., the self-admittance of the high voltage terminal 

bus. It follows from the FDF that the high voltage bus frequency is approximated by (2) which gives an 

insight of how the method can determine the effective locations of PMUs to know the required local 

frequencies and estimate the frequencies which are not monitored. 

 𝑦𝐵𝐺𝑖

ℎ𝑣 × 𝑓𝐵𝐺𝑖

ℎ𝑣 = 𝑦𝑡𝑟𝑖
× 𝑓𝐵𝐺𝑖

+ 𝑦1 × 𝑓𝐵1
+ 𝑦2 × 𝑓𝐵2

+ ⋯ + 𝑦𝑘 × 𝑓𝐵𝑘
 (2) 

where, 𝑖 = 1,2, … , 𝑛𝑔 such that 𝑛𝑔 is the number of connected devices which are required to get its 

contribution to the frequency regulation.  

For the sake of generality, let 𝑴 denote the limited set of network buses which are monitored, and the 

operator can observe their frequencies, voltages, and line powers. Let 𝑼 denote the set of unmonitored 

buses, 𝑼∗ is the set of unmonitored buses and selected by the must-monitor/estimate bus locator. Let the 

𝑩 denote the full set of network buses. The relationship between these sets can be mathematically 

expressed as follows.  

 
𝑩 ≔ 𝑴 ∪ 𝑼  

𝑼∗ ⊆ 𝑼 
(3) 

According to (3), the admittance matrix of the network is rearranged and written in (4). 

 𝑌𝑏𝑢𝑠 = (
𝑌𝑀𝑀 𝑌𝑀𝑈

𝑌𝑈𝑀 𝑌𝑈𝑈
) (4) 

The dimension of the admittance matrix can be reduced according to the necessary local buses given by 

the must-monitor/estimate bus locator where the new reduced matrix 𝑌𝑏𝑢𝑠
𝑟𝑒𝑑 represents the study region 

as in (5).  

 𝑌𝑏𝑢𝑠
𝑟𝑒𝑑 = (

𝑌𝑀𝑀 𝑌𝑀𝑈∗

𝑌𝑈∗𝑀 𝑌𝑈∗𝑈∗  
) (5) 

Note that the dimension of 𝑌𝑏𝑢𝑠
𝑟𝑒𝑑 is less than that of 𝑌𝑏𝑢𝑠 since, for regional estimation, 𝑼∗ ⊂ 𝑼.  It 

follows that (2) can be generalized as given below in (6). 

 −𝑌𝑀𝑀 × 𝒇𝑴 = 𝑌𝑀𝑈∗ × 𝒇𝑼∗ (6) 

and frequencies of the unmonitored set are approximated via (7). 

 𝒇𝑼∗ = −𝑌𝑀𝑈∗
† × 𝑌𝑀𝑀 × 𝒇𝑴 (7) 

where 𝒇𝑴 = [𝑓𝑚1
(𝑡) 𝑓𝑚2

(𝑡) … 𝑓
𝑚𝑗

(𝑡)]
⊤

, and 𝒇𝑼∗ = [𝑓𝑢1
(𝑡) 𝑓𝑢2

(𝑡) … 𝑓
𝑢𝑙

(𝑡)]
⊤

 are the 

frequencies of the 𝑗 buses of the 𝑴 set, and the 𝑙 buses of the 𝑼∗ set respectively and † is the matrix 

pseudo inverse. After estimating the necessary frequencies 𝒇𝑼∗, the rotor speeds can be estimated each 

as an internal bus frequency behind the transient reactance. The setup for the rotor speed estimation is 

given below. 
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Let 𝒉 denote a set of hypothetical buses different from those of the network. A hypothetical bus is a bus 

that is virtually located behind a transient reactance in case of the synchronous machine or behind an 

equivalent impedance that can be determined by the operator for each non-synchronous generating 

device depending on its capacity and dynamic behaviour [16]. The frequencies of the 𝒉 set are the actual/ 

virtual rotor speeds. Following the same procedure, a new admittance matrix can be extracted now with 

further dimension reduction to represent the generation devices in the study region. Let 𝑌𝑏𝑢𝑠
𝐺  denote this 

generation admittance matrix which can be written in terms of the internal buses set 𝒉 and the terminal 

buses set 𝑻 = {𝑇1, 𝑇1
ℎ𝑣 , 𝑇2, 𝑇2

ℎ𝑣 … , 𝑇𝑛𝑔
, 𝑇𝑛𝑔

ℎ𝑣}. Note that the terminal buses 𝑇𝑖, 𝑇𝑖
ℎ𝑣 for the 𝑖𝑡ℎ generation 

device are 𝐵𝐺𝑖
 and 𝐵𝐺𝑖

ℎ𝑣 as depicted in Figure 3.  In practice, 𝐵𝐺𝑖

ℎ𝑣 ∈ 𝑴 (monitored) while 𝐵𝐺𝑖
 ∈ 𝑼∗ 

(unmonitored but estimated with (7)) and 𝑻 ⊆ 𝑼∗. The 𝑌𝑏𝑢𝑠
𝐺  is given as follows. 

 𝑌𝑏𝑢𝑠
𝐺 = (

𝑌𝑇𝑇
′ 𝑌𝑇ℎ

𝑌ℎ𝑇 𝑌ℎℎ  
) (8) 

In (8), 𝑌𝑇𝑇
′  is calculated by modifying 𝑌𝑇𝑇 with the internal equivalent impedances such that: 

 𝑌𝑇𝑇
′ = 𝑌𝑇𝑇 + 𝑌𝐺 (9) 

𝑌𝐺  is a diagonal matrix with the same dimension as 𝑌𝑇𝑇 and its main diagonal entry is 1/𝑥𝑑
′  if the 

generating device is installed on the corresponding bus and zero otherwise. 𝑌𝑇ℎ(𝑇𝑖, ℎ𝑖) has a nonzero 

entry equal to 1/𝑥𝑑𝑖
′  if the 𝑖𝑡ℎ generation device (with internal bus ℎ𝑖) is connected to the terminal bus 

𝑇𝑖. 𝑌ℎℎ is a square diagonal matrix where the entry corresponding to the 𝑖𝑡ℎ generation device equals 

−1/𝑥𝑑𝑖
′ . Finally, 𝑌ℎ𝑇 = 𝑌𝑇ℎ

⊤ . The rotor speeds can be estimated as given by (10). 

 𝝎̂𝑮 = −𝑌𝑇ℎ
† 𝑌𝑇𝑇

′ × 𝒇𝑻 (10) 

The regional equivalent rotor speed 𝜔̂𝐶𝑂𝐼 is calculated as the arithmetic mean of the estimated rotor 

speeds. If the region has 𝑛𝑠𝑦𝑛 large synchronous machines with known inertia constants 

𝐻1, 𝐻2, … 𝐻𝑛𝑠𝑦𝑛 
to the operator, the calculation of the  𝜔̂𝐶𝑂𝐼 can be improved using (11). 

 𝜔̂𝐶𝑂𝐼 = 𝑎𝑣𝑔 {(
1

∑ 𝐻𝑛
𝑛𝑠𝑦𝑛

𝑛=1

 ∑ 𝜔𝐺𝑛
× 𝐻𝑛

𝑛𝑠𝑦𝑛

𝑛=1

) , ( 
1

𝑛𝑔 − 𝑛𝑠𝑦𝑛
∑ 𝜔𝐺𝑛

𝑛𝑔

𝑛=𝑛𝑠𝑦𝑛+1

)} (11) 

Once the proposed equivalent rotor speed frequency is estimated, it can be exported to the governor and 

load models which are discussed in the next subsection.   

2.3. Estimation of active power mismatch  

The main task in this subsection is to estimate the time series of the active power mismatch for each 

time window, i.e., Δ𝑃̂𝑖(𝑡). This is mathematically assumed to be as follows. 

 Δ𝑃̂𝑖(𝑡) = 𝑃̂𝑚
𝑖 (𝑡) − 𝑃𝑒

𝑖(𝑡) (12) 

An aggregate governor estimates the active power imbalance in the region based on the boundary power 

flow and equivalent frequency 𝜔̂𝐶𝑂𝐼, as summarized in Figure 4. The dashed boxes denote data vectors 

of the 𝑖𝑡ℎ time window. The time frame of each sliding time window includes the pre-analysis time 𝑇𝑝𝑟𝑒, 

the post analysis time 𝑇𝑝𝑜𝑠𝑡, and the gap duration 𝑇𝑔𝑎𝑝 between them if exists. Accordingly, the 𝑖𝑡ℎ 

sliding window for active power in Figure 4 is separated into two blocks (𝑇𝑔𝑎𝑝 = 0): 𝑃𝑡𝑖𝑒,𝑝𝑟𝑒
𝑖  , and 

𝑃𝑡𝑖𝑒,𝑝𝑜𝑠𝑡
𝑖 , and the same is true for the frequency, 𝜔̂𝐶𝑂𝐼,𝑝𝑟𝑒

𝑖 , 𝜔̂𝐶𝑂𝐼,𝑝𝑜𝑠𝑡
𝑖  and the average of voltage variations 

in a limited set of high voltage buses 𝑣𝑝𝑟𝑒
𝑖 , and 𝑣𝑝𝑜𝑠𝑡

𝑖 . An estimation time 𝑇𝑒𝑠𝑡 is defined by the user to 

govern the moving length of the sliding window. In other words, the pre, gap, and post analysis of the 

data is repeated after 𝑛𝑇𝑒𝑠𝑡 where 𝑛 = 0,1, …, and so on.    
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Figure 4. Block Diagram of the power mismatch estimation 

It is assumed that the region is balanced with mechanical power equal to 𝑃̅𝑡𝑖𝑒
𝑖 + 𝑃𝑙0 during the pre-time 

analysis of each time window 𝑖. Such that 𝑃̅𝑡𝑖𝑒
𝑖  is the average of the tie line power during 𝑇𝑝𝑟𝑒 of the 𝑖𝑡ℎ 

time window while 𝑃𝑙0 is an aggregated load power which is a constant 𝑀𝑊 for the study region and 

could be known to the operator.  

Any following change in mechanical power is determined by the frequency change in the region during 

𝑇𝑝𝑜𝑠𝑡 period and denoted as  𝑃̂𝑚,𝑓
𝑖   to represent the frequency sensitive component of 𝑃𝑚

𝑖 . A delay in the 

realistic governor response can be represented. The average of 𝜔̂𝐶𝑂𝐼,𝑝𝑟𝑒
𝑖   is used to correct 𝜔̂𝐶𝑂𝐼,𝑝𝑜𝑠𝑡

𝑖   for 

the frequency deviation during the 𝑇𝑝𝑟𝑒 (e.g. if the average of 𝜔̂𝐶𝑂𝐼,𝑝𝑟𝑒
𝑖  is 59.95 Hz and the frequency in 

the first sample of 𝜔̂𝐶𝑂𝐼,𝑝𝑜𝑠𝑡
𝑖  is 59.94 Hz then Δ𝜔̂𝐶𝑂𝐼

𝑖  considered by the imbalance estimation for the first 

sample will be 0.01 Hz). This is necessary to avoid double counting of the governor response for this 

pre-existing deviation (once in 𝑃̅𝑡𝑖𝑒
𝑖  and again in 𝑃̂𝑚,𝑓

𝑖 ) due to the assumption that the system is balanced 

at the start of the post-time window. Note, this process is resilient in the presence of frequency control 

response FCR provided by non-synchronous resources, e.g., battery energy storage, as they will directly 

impact the measured electrical power.  

Furthermore, the aggregate governor parameters of dead-band and gain need not be highly accurate and 

can be based on the standard grid code requirements. On the other hand, the electrical power for a 

specific time window, see Figure 4, is represented by the tie line power 𝑃𝑡𝑖𝑒,𝑝𝑜𝑠𝑡
𝑖 , and the changes in the 

load power Δ𝑃𝑙
𝑖 during 𝑇𝑝𝑜𝑠𝑡. Mechanical and electrical power of each time window expressed as: 

 𝑃̂𝑚
𝑖 (𝑡) = 𝑃̅𝑡𝑖𝑒

𝑖 (𝑡) + 𝑃𝑙0 + 𝑃̂𝑚,𝑓
𝑖 (𝑡) (13) 

 

 𝑃̂𝑒
𝑖(𝑡) = 𝑃𝑡𝑖𝑒,𝑝𝑜𝑠𝑡

𝑖 (𝑡) + Δ𝑃̂𝑙
𝑖(𝑡) (14) 

The load response Δ𝑃̂𝑙
𝑖 is estimated using the PMU voltage measurements which is used along with an 

approximated ZIP load model, for simplicity in this study, to account for variations of the load power 

during different time windows. Given load model parameters, the constant power coefficient 𝑃𝑝, the 

constant current parameter 𝑃𝐼, and the constant admittance load 𝑃𝑍, Δ𝑃̂𝑙
𝑖(𝑡) is mathematically described 

for a specific 𝑖𝑡ℎ time window as:  

 Δ𝑃̂𝑙
𝑖(𝑡) = 𝑃𝑙0 × [𝑃𝑝 + 𝑃𝐼 × Δ𝑣𝑖 + 𝑃𝑍 × Δ𝑣𝑖2

] (15) 

Δ𝑣𝑖 is the voltage variations for the 𝑖𝑡ℎ time window, i.e., the difference between 𝑣𝑝𝑜𝑠𝑡
𝑖  and  𝑣̅𝑖. 

 

2.4. ARMAX system identification and inertia estimation candidates 

The developed method uses an ARMAX-SID for the purpose of identifying the dynamics between the 

𝜔̂𝐶𝑂𝐼, and Δ𝑃̂. ARMAX, i.e., Autoregressive Moving Average with Exogenous inputs is a type of time-

series model used for prediction and forecasting. It is an extension of the ARMA (Autoregressive 

Moving Average) model that incorporates additional exogenous (external) variables that may influence 

the time series being analysed. ARMAX models are characterized by the order of the autoregressive 
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component, the order of the moving average component, and the number of exogeneous variables. The 

ARMAX model can be expressed mathematically as follows: 

 

y(t) = θ1𝑦(𝑡 − 1) + 𝜃2𝑦(𝑡 − 2) + ⋯ + 𝜃𝑝𝑦(𝑡 − 𝑝) + 𝛽1𝑥1(𝑡) + 𝛽2𝑥2(𝑡)

+ ⋯ + 𝛽𝑟𝑥𝑟(𝑡) + 𝜖(𝑡) + 𝜑1𝜖(𝑡 − 1) + 𝜑2𝜖(𝑡 − 2) + ⋯
+ 𝜑𝑞𝜖(𝑡 − 𝑞) 

(16) 

where: 𝑦(𝑡) represents the time series being modelled, 𝑥𝑖(𝑡) represents the exogenous variable 𝑖 at time 

t, 𝜃's are the autoregressive coefficients, 𝛽's are the coefficients for the exogenous variables, 𝜖(𝑡) 

represents the white noise error term, and 𝜑's are the moving average coefficients for the error term. 

ARMAX is preferred over other methods, e.g., AR (Auto-Regressive), ARX (autoregressive with 

exogenous terms), ARMA (autoregressive moving average) since ARMAX is the most comprehensive 

model amongst these options [5], [9]. Its output is characterized as the sum of three regression terms 

containing past input, output, and disturbances, whereas the other methods only comprise two of the 

three terms. The exogeneous variables gives the ARMAX the advantage to represent uncertainties in the 

power system such as load changes, and renewable energy. 

Data (𝜔̂𝐶𝑂𝐼, and Δ𝑃̂) are inputted for the ARMAX-SID and ARMAX models (equal to the number of 

user-defined sliding time windows) are trained. ARMAX models are trained with Δ𝑃̂ as an exogeneous 

input and 𝜔̂𝐶𝑂𝐼 as an output. A polynomial model is identified for each time window and coefficients in 

(16) are calculated. The 𝑖𝑡ℎ identified ARMAX model is used to get the frequency response 𝜔𝑠𝑡𝑒𝑝
𝑖  of a 

unit step change in Δ𝑃𝑖 and ROCOF is calculated for each time window as 
𝑑

𝑑𝑡
𝜔𝑠𝑡𝑒𝑝

𝑖 . The traditional 

swing equation, see Figure 2, is used for the ROCOF calculation and hence the inertia estimation. 

Although this is the traditional form of the swing equation, it is used in this context with the estimated 

signals of  𝜔̂𝐶𝑂𝐼, and Δ𝑃̂ which makes the inertia estimated is the effective inertia that relates the local 

frequency deviations with the power mismatch. The estimation candidate for each time window could 

be calculated using the initial value theorem as given in (17). 

 𝐻𝑒𝑠𝑡
𝑖 = 0.5

1

𝑑
𝑑𝑡

𝜔𝑠𝑡𝑒𝑝
𝑖 |𝑡=0

 (17) 

Alternatively, a second order curve fitting could be implemented for the generated model outputs 
𝑑

𝑑𝑡
𝜔𝑠𝑡𝑒𝑝

𝑖 (𝑡) where the initial value of the fitted parabola is considered the candidate estimate. This can 

reject the imperfect models that produce poor estimates. 

2.5. Data buffer and sliding windows 

The methodology is based on the serial processing of a data buffer (with length of 𝑏 seconds) that is 

refreshed every 𝑟 seconds. The method processes each buffer and then based on this, updates the regional 

inertia estimate every 𝑟 seconds. The data buffer is broken up into 𝑁 sliding windows of frequency, 

voltage, and active power data, each of which is used to calculate a candidate inertia estimate. The set 

of 𝑁 candidate values are blended to create a final estimate of inertia that represents the result for this 

data buffer. Here the blending process simply entails taking the mean of the estimates after discarding 

those estimates below the 5th percentile and above the 95th percentile of the estimate range. 

3. Case study on synthetic Texas grid model 

The performance of the developed method is tested via different test cases and operating scenarios. We 

limit our presentation to a relatively large and practical Texas test system. Simulations are conducted 

using the commercial software PSS/E which can efficiently perform dynamic simulations of large-scale 

power systems. 

3.1. Study system 

The 2000-bus synthetic Texas grid model has been built from publicly available information by Texas 

A&M University [17]. The system has 544 generating devices (among which 87 renewables), and 1350  
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Figure 5. Synthetic Texas grid model: A map of the electrical regions 

loads. As shown in Figure 5, the system is divided into 8 areas. The South area is selected as the study 

region, in which there are 41 in-service synchronous generators with 7,448 MVA in capacity. Each 

synchronous generator has a governor model without dead-band, and the droop is 4% or 5%. There are 

11 renewable generators with totally 2,512 MVA in capacity in the South area. Each renewable 

generator is modelled by the WECC generic converter model and electric control model. No inertia 

contribution from these renewable generators. The total load in the South area is 6,751 MW. Also, there 

are 25 tie-lines between the study region (South) and its neighbour regions (West, South Central, and 

Coast).  The ground truth total rotating inertia of the southern region is 34,610 MVAs. A load in Coast 

area is modulated to mimic 250 𝑠 long ambient data measurements. The PMU reporting rate is 30 Hz. 

3.2. Inertia estimation results 

Machines low voltage terminal buses are unmonitored, and their frequencies need to be estimated 

through the FDF. The FDF is again used to estimate rotor speeds from the set of observed/estimated 

frequencies, and finally their arithmetic mean 𝜔̂𝐶𝑂𝐼 is calculated. Figure 6 shows  𝜔̂𝐶𝑂𝐼 versus the 

average of the available frequencies. Although the difference between them, with ambient data, is not 

significant, the inertia estimation is impacted when using the frequency instead of 𝜔̂𝐶𝑂𝐼. The estimated 

governor response, and the frequency variations of the 1st time window (Tpre = 10 s, Tpost =

30 s, & Tgap = 0) are depicted in Figure 7. This is obtained with a linear governor model with droop 

constant of 5%, zero dead-band, and installed capacity of 7500 MW. Voltages are used to estimate the 

aggregate load variations of the study region with an assumed static load model of 20% constant power 

load, 30% constant admittance load, and 50% constant current load. The estimated load response  P̂l for 

the 1st window is shown in Figure 8. The estimated ω̂COI and  ΔP̂ are inputted to the ARMAX-SID and 

the inertia estimates are depicted in Figure 9. 

 

Figure 6. Actual/estimated equivalent rotor speed versus the average of monitored frequencies.  
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Figure 7. Estimation of the governor response versus the frequency variations   

 
Figure 8. Estimation of the load response versus the voltage variations  

 

Figure 9. Inertia estimation for sliding time windows 

 

The inertia estimation results with different scenarios are given in Table 1. The addressed scenarios 

depict the performance of the proposed method with the governor response estimation, the load response 

estimation, the estimated rotor speed, and finally the impact of those on the estimated inertia. Using only 

tie-line powers and ignoring the load response, which is approximated here by its voltage dependency, 

impacts the results and causes underestimating the inertia, see Scenario #4. On the other hand, direct 

use of frequencies of the network without approximating the internal rotor speeds causes an 

overestimation of the inertia (Scenario #3). The governor model with its parameters, i.e., dead-band, 

droop constant, installed MW capacity contributes in accurately estimating the power imbalance. 
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Table 1. Inertia estimation results 

 
Scenario 

NO. 
Governor response 

estimation 
Voltage-dependent 

load estimation 
Rotor speed 
estimation 

𝑯̂ (𝑴𝑾𝒔) 
Error 
(%) 

1 Deactivated Deactivated Deactivated 76,579 121.0 

2 Activated Deactivated Deactivated 70,264 103.0 

3 Activated Activated Deactivated 41,624 26.0 

4 Activated Deactivated Activated 29,765 -14.0 

5 Activated Activated Activated 34,794 0.5 

 

4. Conclusion 

In conclusion, this paper proposes a novel algorithm designed to estimate regional inertia in real-time 

using ambient data. By combining ARMAX based system identification, an efficient governor 

approximation, an aggregate load model that adapts to ambient changes, and a dynamic state estimator 

capable of estimating internal frequencies and rotor speeds, the proposed method offers continuous and 

accurate estimations without the need for specific events. The application of this methodology on the 

Texas grid model 2000 bus system demonstrates its excellent performance. Furthermore, the study 

investigates the impact of each component by deactivating/activating them and assessing their influence 

on estimation accuracy. The results highlight the significance of the aggregate load models in estimating 

load response and emphasize the efficacy of the rotor speed estimator in effectively approximating the 

virtual regional equivalent rotor speed. Overall, the proposed method represents a valuable contribution 

to the field of inertia estimation, offering a simple parameterization and a robust solution for real-time 

estimation of regional inertia using ambient data. 
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