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SUMMARY 
 

Vegetation, particularly trees falling or growing into overhead power lines, is the leading cause of 

electric power outages in the United States. It significantly impacts power reliability, especially in 

regions with dense forests like Puerto Rico. To address the issue of vegetation-related outages, the paper 

presents a prescriptive vegetation management framework to mitigate vegetation-related power outages 

in distribution systems. The study aims to enhance power reliability and resilience by leveraging 

historical utility outage data, high-resolution NDVI (Normalized Difference Vegetation Index) satellite 

imagery, and advanced analytics. Specifically, this paper uses NDVI values, which indicate vegetation 

density, to develop a vegetation proxy index for each line segment. The index accounts for distribution 

line segment neighbouring area’s impact on power lines and provides detailed information on vegetation 

exposure along the line segments. The study demonstrated ability to predict outage events and affected 

customer numbers based on variables - such as line length, customer numbers, and the newly introduced 

vegetation proxy index – using Poisson log-linear regression. The regression models’ performance was 

evaluated using AICc and BIC criteria, with the results showing that the model parameters contribute to 

the model's accuracy with statistical significance. To mitigate potential risks of vegetation-related 

outages, the study recommended tree trimming in specific areas based on the vegetation proxy index. 

Two tree trimming approaches, narrow and wide, were considered, and their impact on reducing outage 

events and affected customers was predicted. This creates an opportunity to optimally plan tree 

trimming, assuring the highest return on invested capital in terms of SAIDI/SAIFI reduction. The results 

validated the expectation that wide trimming had a more substantial effect on reducing outages and the 

number of affected customers. The presented work demonstrated the potential of using lower-cost high-

resolution satellite imagery and advanced analytics to predict vegetation-related power outages and 

develop prescriptive vegetation management strategies. With a developed predictive vegetation-related 

outage model, distribution system operator in Puerto Rico can make informed decisions on tree trimming 

– where, how deep, and when to trim trees - to enhance the system's reliability and resilience at the 

lowest cost to the ratepayers. 
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1. INTRODUCTION  

According to the Federal Energy Regulatory Commission (FERC), vegetation, especially 

trees that grow or fall into overhead power lines, is the primary cause of electric power outages 

in the United States. This issue significantly impacts power reliability, particularly in tropical 

regions like Puerto Rico, where over 59% of the area is covered by forests [1]. In 2018, a single 

fallen tree on a power line resulted in a massive power outage affecting approximately 900,000 

customers in Puerto Rico, leading to significant economic costs [2]. Data from LUMA, the 

utility company, reveals that vegetation-related outages in Puerto Rico’s distribution networks 

accounted for a substantial 19% of the total outages between 2017 and 2022 due to the high 

exposure to trees. 

LUMA has engaged Quanta Technology to help design cost-effective solutions that 

improve power reliability and resilience in Puerto Rico. With a deep understanding of the 

challenges LUMA is facing, Quanta Technology developed a data-driven, prescriptive 

vegetation management framework by leveraging historical data and advanced analytics, 

aiming to prevent outages and build resilient distribution systems. In light of the significant 

impact of vegetation on power outages, it is crucial that the next phase of resilience planning 

addresses the urgent challenges related to vegetation by better assessing, quantifying potential 

risks, and prescribing solutions to vegetation-related vulnerabilities.  

To mitigate potential risks of vegetation before they cause outages, utilities traditionally 

conduct periodic tree trimming that involves regularly scheduled maintenance where utility 

crews proactively trim trees in predetermined areas along power lines. However, determining 

the trimming regions typically relies on manual patrols or helicopter inspections, which is 

extremely exhaustive and time-consuming [3]. New sensor technologies, such as LiDAR (Light 

Detection and Ranging) [4] and vision sensors [5] has been deployed to vegetation monitoring 

system for strategic defense of power infrastructures. Vegetation height and the encroachment 

to power lines are estimated in [5] using image data from vision sensors mounted on power 

towers deploying stereovision and deep learning techniques. While proven effective in 

transmission systems, such methodology has not been successfully applied at a granular level 

on a distribution system in a cost-effective fashion. 

Airborne LiDAR has been used in [6] to collect vegetation height and GIS (Geographic 

Information System) data for predicting vegetation-related outages. However, in distribution 

systems, the use of drones for scanning along the extensive network of distribution lines is time-

consuming and costly. Over the past few years, there has been a noticeable decline in the cost 

of launching satellites, leading to a proliferation of satellites and mini-satellites that are 

equipped with advanced sensors. Therefore, the cost of commercial satellite imagery has 

significantly decreased, enabling access to high-resolution images and extensive global 

coverage. A recent study in [7] use high-resolution satellite imagery to monitor the vegetation 

proximity to the power lines based on image processing and neural network techniques. 

However, this study only discusses monitoring system and does not provide an outage 

prediction methodology. Several studies have been conducted to predict vegetation-related 

outages using analytical and data-driven approaches [8-11]. These studies have focused on 

modeling the impact of tree trimming on vegetation-related failures and predicting feeder 

failure rates. Nevertheless, they either neglect to utilize vegetation indices [8] or employ them 

directly as measured [9-11], lacking an analytical interpretation of vegetation image data to 

accurately quantify the vegetation exposure of power lines at high resolutions and its impact on 

outages for detailed and accurate analysis of outage risks at the feeder level. Additionally, these 

studies do not include predictions of the number of affected customers during distribution 

system outages.  
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In this paper, a comprehensive case study in Puerto Rico is conducted to predict vegetation-

related outages in distribution systems using lower-cost, high-resolution satellite NDVI 

imagery and historical outage data. The study includes the development of a Gaussian kernel-

based vegetation proxy index, derived from NDVI values, to accurately quantify the vegetation 

exposure of power lines. The impact of various indicators – such as distribution line 

characteristics (e.g., line length, number of phases in a line section), number of customers, and 

the newly developed vegetation proxy index - on vegetation-related outages and the number of 

customers affected are investigated. Statistical models using Poisson log-linear regression are 

generated to predict the number of outages and affected customers due to vegetation. By 

employing the established models, distribution system operators can estimate the impact of 

vegetation control measures, such as tree trimming, on outage and customer loss reduction. This 

predictive capability enables them to make informed decisions on prioritizing tree-trimming 

activities across the regions and in specific areas, ultimately leading to a more effective capital 

spent on a resilient and reliable distribution system with minimized vegetation-related outages 

and customer disruptions.  

2. USE CASE AND DATA DESCRIPTION  

The study is conducted in partnership with LUMA, the power distribution system operator 

in Puerto Rico. It focuses on the Northwest area of the distribution network, which encompasses 

both urban business areas and rural regions, including agriculture fields, forests, and water 

streams, as shown in Fig. 1. Various datasets were collected, including satellite imagery, 

distribution system infrastructure data, and outage records specific to the studied area, as 

described below. 

 
Fig. 1  Studied region in Puerto Rico (images from google earth) 

2.1  Satellite NDVI imagery  

This study uses four high-resolution satellite quarterly NDVI images captured in March, 

June, September, and December in 2022, as shown in Fig. 2.  

  

    

(a) Mar. 2022 (b) Jun 2022 (c) Sep. 2022 (d) Dec. 2022 

Fig. 2   Satellite NDVI images captured in 2022 

These images have a consistent pixel size of 3 meters per pixel and encompass NDVI 

values ranging from -1 to 1. The NDVI values commonly used to detect vegetation in remote 

sensing and is computed by measuring the difference between the near-infrared light (NIR), 
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which is strongly reflected by vegetation, and the red light (RED), which is absorbed by 

vegetation, as illustrated in (1) [7].  

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 (1) 

The high-resolution NDVI maps provide substantial vegetation data that allows detailed 

investigation and quantification study of vegetation impact on distribution feeders. 

2.2  Power infrastructure and outage data 

The GIS data of the line segments reveals that there are 181 feeders within the designated 

map region. These feeders account for approximately 10% of the total 1698 feeders operated 

by LUMA in Puerto Rico. They include distribution lines with voltage levels ranging from 2 

kV to 13 kV, operating in 1, 2, or 3 phases. The dataset focuses on power outages related to 

vegetation from 2017 through 2022. In addition, it is disaggregated by individual feeders 

including line length data of overhead and underground lines in 1, 2, or 3 phases for each feeder, 

the number of customers served by that feeder, and the count of tree-related incidents and 

affected customers on that feeder, as described below. 

Nomenclature Description 

Outage_Event_Num Total number of outage events in each feeder 

Affected_Customer_Num Total number of customers whose power are interrupted in each feeder  

Length 1phase_OH  Total length of overhead 1 phase power line in each feeder  

Length 2phase_OH  Total length of overhead 2 phase power line in each feeder 

Length 3phase_OH  Total length of overhead 3 phase power line in each feeder 

Length_1phase_UG  Total length of underground 1 phase power line in each feeder 

Length _2phase_UG  Total length of underground 2 phase power line in each feeder 

Length _3phase_UG  Total length of underground 3 phase power line in each feeder 

Customer_Num Total number of the customers served by each feeder  

The current dataset lacks information on vegetation, which will be generated based on the 

satellite NDVI image processing in the subsequent section.  

3. SATELLITE IMAGE PROCESSING AND VEGETATION PROXY INDEX  

The four seasons' satellite images are merged into a single NDVI image. This resulting 

NDVI image overlapped with the distribution network based on GIS data by aligning the image 

coordinate system with the GIS coordinate system. The overlapping provides a spatial 

correspondence between the NDVI pixels and the distribution network, which is utilized to 

generate a vegetation proxy index for every distribution line segment at a high resolution that 

can consist of as little as a few line spans.  

3.1  Satellite image data processing  

While the four satellite image data focus on the same part of Puerto Rico, they still vary in 

size and covered regions. To create a comprehensive NDVI map for 2022 and extract as much 

valuable information as possible from these images, they are merged into a single map using 

the maximum method. Specifically, the four images are pre-processed to filter out the pixel data 

outside the NDVI range (-1 to 1). Subsequently, the GIS coordinates of pixels in the four maps 

are aligned to generate a new merged image. In this merged image, the maximum NDVI value 

is selected for pixels with the same coordinates. By employing this approach, the final merged 

NDVI map accurately records the most severe vegetation conditions observed throughout 2022, 

which have the potential to affect power lines and cause outages in the studied region. Fig. 3 

(a) shows the merged NDVI map, with the NDVI values illustrated in color for better 

visualization, in contrast to the greyscale in Fig. 2. Further, the distribution lines are mapped 
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on the merged NDVI image based on the GIS data of the starting and ending points of each line 

segments, as shown in Fig.3 (b).      

  
(a) Merged NDVI map (b) Merged map with distribution lines 

Fig. 3   Merged satellite NDVI map covered with distribution lines 

3.2  Vegetation proxy index  

After mapping the distribution lines with the NDVI map, the vegetation proxy index is 

generated to quantify the vegetation exposure level of each line segment. Fig. 4 uses an example 

to illustrate the vegetation proxy index quantification process based on a Gaussian convolution, 

which is a common operation and building block for algorithms in signal and image processing 

[12].  

 

Fig. 4 Vegetation proxy index for line segment 

To account for the impact of neighboring areas on the power line, a 3 by 3 sliding window 

covering a 9m×9m area around the line is created. This window is convolved with a normalized 

Gaussian kernel to differentiate the levels of vegetation exposure in the covered areas. The 

resulting vegetation proxy index, denoted as 𝑉𝑖,𝑗,𝑚 , represents the quantification of the 

vegetation exposure on the 𝑖𝑡ℎ pixel of the 𝑗𝑡ℎ line segment (𝐿𝑗,𝑚) in the 𝑚𝑡ℎ feeder (𝐹𝑚), as 

shown in (2). 

𝑉𝑖,𝑗,𝑚 = [

𝑥𝑖−1,𝑖−1 𝑥𝑖−1,𝑖 𝑥𝑖−1,𝑖+1
𝑥𝑖−1,𝑖 𝑥𝑖,𝑖 𝑥𝑖,𝑖+1
𝑥𝑖−1,𝑖+1 𝑥𝑖+1,𝑖 𝑥𝑖+1,𝑖+1

]

𝑗,𝑚⏟                  
𝐴𝑗,𝑚

∗ [

𝑔11 𝑔12 𝑔13
𝑔21 𝑔22 𝑔23
𝑔31 𝑔32 𝑔33

]
⏟          

𝐺

 
(2) 

To elaborate, matrix 𝐴𝑗,𝑚 contains the NDVI values in the 3 by 3 sliding window, with 𝑥𝑖,𝑖 

being the NDVI value in the 𝑖𝑡ℎ  pixel on the line, and the rest represent NDVI values in 

neighboring pixels. Matrix 𝐺represents the normalized Gaussian kernel, with specific values to 

weigh the impact of adjacent pixels appropriately. Specifically, 𝑔11, 𝑔13, 𝑔31, 𝑔33 has the same 

value of 
1

16
, 𝑔12, 𝑔21, 𝑔32, 𝑔23 has the same value of 

1

8
, and 𝑔22 is 

1

4
. 
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By sliding through the line segment pixel by pixel and convolving with the Gaussian 

kernel, a new set of NDVI values is generated, forming a vegetation proxy index that indicates 

vegetation exposure at the pixel level on the line. This index captures vegetation exposure 

across a wider range in the line corridors, providing detailed information for accurate power 

line analysis. It is important to note that this vegetation proxy index remains applicable even 

when line segments do not align parallelly with the pixels like in Fig. 4 as the approach 

effectively considers neighboring pixels that cover adjacent areas, and provides valuable 

information for analyzing power lines under varying scenarios.  

After generating the vegetation proxy index for each line segment, the next step is to 

aggregate this data to obtain the feeder-level vegetation proxy index. This aggregation process 

combines the vegetation proxy index values of all the line segments within a feeder to provide 

an overall measure of vegetation exposure for that feeder.  

4. STATISTICAL MODELING  

4.1  Poisson log-linear regression model 

Two statistical models are developed to analyze the outage characteristics of the feeders, 

utilizing two different outputs: Outage_Event_Num (𝑌1) and Affected_Customer_Num (𝑌2) in the 

feeder. Poisson regression is usually used for modeling when the response variables are counts 

[13]. As shown in Fig. 5 (a) and (b), both 𝑌1  and 𝑌2 display a skewed Poisson distribution, 

deviating from a normal pattern. Given this non-normality, traditional Poisson linear regression 

is not applicable for effective modelling. To address this issue, log-linear regression is chosen 

for this paper. This method involves transforming the outputs into their logarithmic form, as 

illustrated in Fig. 5 (c) and (d), resulting in a more normal distribution. The transformed outputs 

are then utilized as the new response variables for the log-linear regression model. The Poisson 

log-linear models with response variables of Y1 and Y2 are represented in (5) and (6).  

𝒚𝟏 = exp(𝛼1 + 𝛽1,1𝒙𝟏,𝟏 +⋯+ 𝛽1,𝑘𝒙𝟏,𝒌) (5) 

𝒚𝟐 = exp(𝛼2 + 𝛽2,1𝒙𝟏,𝟏 +⋯+ 𝛽2,𝑘𝒙𝟐,𝒌) (6) 

where 𝒚𝟏 and 𝒚𝟐 indicate the vectors of the Outage_Event_Num and Affected_Customer_Num on 

the selected feeders, respectively. The models consist of intercepts (𝛼1 and 𝛼2) and variables 

{𝒙𝟏,𝟏, … 𝒙𝟏,𝒌} and {𝒙𝟐,𝟏, … 𝒙𝟐,𝒌} for 𝑌1 and 𝑌2 responses, respectively. The weights for these 

variables are denoted as {𝛽1,1, … 𝛽1,𝑘} and {𝛽2,1, … 𝛽2,𝑘}.  

    

(a) Event count (𝑌1) (b) Customer number (𝑌2) (c) log (𝑌1) (d) log (𝑌2) 

Fig. 5   Data distribution of event count and number of affected customers from 2017 to 2022 
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To select the appropriate variables for the models, correlation analysis using the REML 

(Restricted Maximum Likelihood) method is performed. This method is commonly used to 

estimate the correlation structure in linear mixed models [14]. Variables that exhibit significant 

correlations with the response variables will be considered candidates for building the log-linear 

models. However, correlation analysis only captures variables with evident correlations with 

the responses. To ensure the best model fit, further screening is performed by comparing 

regression models with different variables. By doing so, the best-fitting model is identified, and 

its corresponding variables are selected as the final determinants for the log-linear models.  

4.2   Goodness-of-fit criterion and model comparison  

Two different methods are used in this paper to compare the regression models for the data 

set, i.e., akaike information criteria (AICc), and Bayesian information criterion (BIC). The 

AICc is an advanced method derived from the AIC method, which is usually used to evaluate 

the model quality by estimating the prediction error [15]. The AIC is defined as (7).  

𝐴𝐼𝐶 = −𝐼𝑛(𝐿̂) + 2𝑘 (7) 

where 𝑘 is the number of independent parameters in the model, and 𝐿̂ represents the maximized 

value of the likelihood function of this model. However, when the sample size is small, AIC 

has a tendency to select models with too many parameters, leading to overfitting. To address 

this, AICc was introduced to incorporate a correction for small sample sizes. It adds an extra 

penalty term for the number of parameters, as represented in (8). 

𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 +
2𝑘2 + 2𝑘

𝑚 − 𝑘 − 1
 

(8) 

where 𝑚  denotes the sample size, i.e., the number of studied feeders in the dataset. The 

Bayesian Information Criterion (BIC) is similar to AIC but imposes a more substantial penalty 

for the number of parameters [16]. It uses the natural logarithm of the sample size (𝑚) to ensure 

that fewer parameters are favored for a simpler model, as shown in (9). 

𝐵𝐼𝐶 = −𝐼𝑛(𝐿̂) + 𝐼𝑛(𝑚)𝑘 (9) 

In model comparison, smaller values of AICc and BIC are preferred, as they indicate better 

fit and appropriate parameters for the dataset. The paper uses both AICc and BIC to identify 

the most suitable regression model with minimal risk of overfitting.  

5. RESULTS  

The Poisson log-linear modeling is applied to the dataset, 

which combines the utility data and the feeder-level vegetation 

proxy index data. This statistical approach is applied to analyze the 

correlation between the variables for predicting two crucial factors: 

Outage_Event_Num (number of outages) and 

Affected_Customer_Num (number of affected customers). To 

create these models, correlation analysis is conducted to identify 

meaningful relationships between the given variables. 

Additionally, goodness-of-fit evaluation metrics such as AICc and 

BIC are utilized to assess the models' performance and choose the 

best-fit models. The generated models are utilized to forecast the 

potential reduction in outage numbers and affected customer 

numbers. This is achieved by simulating the effects of tree 

 
Fig. 6 Data distribution of 

log(
𝑌1

𝑙𝑖𝑛𝑒 𝑙𝑒𝑛𝑔𝑡ℎ
) 
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trimming in the recommended vegetation management areas, which result in decreased NDVI 

values.  

5.1  Outlier removal  

To process the data, the initial step is to remove outliers to ensure data quality and accuracy. 

From Fig. 5, the data distribution also reveals the presence of outliers for both 𝑌1  and 𝑌2 . 

However, removing outliers based solely on the distributions may not be feasible since the 

outage event counts and affected customer counts are inherently related to the overhead bare 

wire length of the feeders. Shorter feeders with fewer customers may naturally have lower event 

outage counts and customer impacts, while longer feeders may exhibit higher counts of events 

and affected customers.  

To address this issue, a more nuanced approach is taken. Instead of directly removing 

outliers, the logarithmic form of the outage event count per mile is utilized as an indicator, 

represented by 𝑙𝑜𝑔(
𝑌1

𝑙𝑖𝑛𝑒 𝑙𝑒𝑛𝑔𝑡ℎ
) , as shown in Fig. 6. By employing this transformed 

representation, outliers in the data can be better identified and analyzed without arbitrarily 

removing feeders solely based on their event and customer counts. This allows for a more robust 

analysis of the data and ensures that the influence of feeder length on outage characteristics is 

appropriately considered. The analysis revealed that 14 feeders as outliers, and they have been 

excluded from the dataset. These outlier feeders may have experienced configurational changes 

over the past five years, resulting in excessively low or high vegetation-related events 

considering the overhead line exposure and feeder customer count today. As a result, the 

remaining 167 feeders are used for further analysis and modeling.  

5.2   Correlation analysis and variable selection  

The correlation between the indicators in the given utility data and the vegetation proxy 

index with the model outputs log (𝑌1) and log (𝑌2) are analyzed based on the REML (Restricted 

Maximum Likelihood) method. Fig. 7 shows the estimation results in a heatmap.  

  

 
X1 Length _1phase_OH  

X2 Length _2phase_OH  

X3 Length _3phase_OH  

X4 Length _1phase_UG  

X5 Length _2phase_UG  

X6 Length _3phase_UG  

X7 Vegetation proxy index 

X8 Customer_Num 

log(Y1) log(Outage_Event_Num) 

log(Y2) log(Affected_Customer_Num) 
 

Fig. 7   Heatmap of correlations 

The heatmap analysis reveals noteworthy patterns in correlation between various 

indicators and vegetation-related outage events (Y1), as well as their impact on affected 

customers (Y2). The line length of overhead lines in 1/2/3 phases (X1, X2, and X3) shows 

relatively higher positive correlations (0.4~0.7) with vegetation-related outages and affected 
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customers. This finding aligns with expectations, as feeders with longer overhead lines have 

greater vegetation exposure potential and are more susceptible to nearby tree contact, leading 

to potential outages. Essentially, an increased length of overhead lines amplifies a circuit's 

exposure to tree-related issues. Conversely, distribution circuits with underground line sections 

in 1/2/3 phases (X4, X5, and X6) exhibit low correlation with the outputs (Y1 and Y2). This result 

is expected since underground lines are not exposed to vegetation, thus not contributing to 

vegetation-related outages.  

Additionally, the vegetation proxy index (X7) demonstrates a high correlation with the 

feeder's vegetation-related outages, validating the effectiveness of the index generation method 

and the significance of considering the vegetation proxy index in this study. This index proves 

to be a useful tool in predicting and addressing vegetation-related challenges. Moreover, the 

analysis indicates that an increase in customer base (X8) significantly contributes to the 

heightened exposure to tree-related issues. As the customer base grows, so does the demand for 

power, necessitating an expansion of the distribution network, including longer overhead lines 

that may encounter vegetation-related challenges. As a result, five indicators with the highest 

correlations including the length of 1/2/3 phase overhead line (X1, X2, X3), developed vegetation 

proxy index (X7), and the served customers (X8) are selected as variables for building the log-

linear regression models.  

5.3   Log-linear regression models and model comparison  

TABLE I and II shows the estimated parameters of Poisson log-linear models of outage 

prediction and affected customer prediction and their p-values. In addition, R2, AICc, and BIC 

are also shown for models with different variables combinations. From TABLE I, it can be seen 

that variables X7 (vegetation proxy index) and X8 (served customer) consistently exhibit low p-

values, indicating their statistical significance in the model. Models 1 to 4 have similar R2 

values above 0.7 and are not highly statistically distinguishable. Among them, Model 3, which 

retains only three variables (X3, X7, and X8), demonstrates the smallest AICc and BIC values, 

indicating the best fit for the dataset. Reducing the number of variables further, especially by 

removing the vegetation proxy index in Model 5, leads to a substantial decline in R2 and a rise 

in AICc and BIC, indicating poorer fitting performance. This highlights the importance and 

effectiveness of the vegetation proxy index, which has a significant impact on outage events. 

TABLE I Estimated parameters, p-values, R2, AICs, BIC of outage prediction 

Model 𝛽1,1 (X1) 𝛽1,2 (X2) 𝛽1,3 (X3) 𝛽1,4 (X7) 𝛽1,5 (X8) Intercept 

(𝛼1) 

R2 AICc BIC 

1 -1.734e-6 

0.3930 

-1.185e-6 

0.6784 

1.0453e-5 

0.0022 

3.5625 

<0.0001 

3.75e-4 

<0.0001 

0.8755 

<0.0001 

0.7376 286.17 306.14 

2 N/A -7.009e-7 

0.8022 

9.0664e-6 

0.0023 

3.4676 

<0.0001 

3.732e-4 

<0.0001 

0.9207 

<0.0001 

0.7362 284.73 301.94 

3 N/A N/A 9.0035e-6 

0.0023 

3.4139 

<0.0001 

3.643e-4 

<0.0001 

0.9406 

<0.0001 

0.7360 282.61 297.03 

4 N/A N/A N/A 3.7535 

<0.0001 

5.556e-4 

<0.0001 

0.8188 

<0.0001 

0.7179 290.04 301.63 

5 N/A N/A N/A N/A 6.961e-4 

<0.0001 

2.4893 

<0.0001 

0.4473 383.74 392.49 

TABLE II Estimated parameters, p-values, R2, AICs, BIC of affected customer prediction  

Model 𝛽2,1 (X1) 𝛽2,2 (X2) 𝛽2,3 (X3) 𝛽2,4 (X7) 𝛽2,5 (X8) Intercept 

(𝛼2) 

R2 AICc BIC 

1 -7.348e-6 

0.0474 

-1.018e-5 

0.0511 

1.4687e-5 

0.0168 

5.5810 

<0.0001 

6.15e-4 

0.0001 

4.2273 

<0.0001 

0.5788 457.84 477.80 

2 N/A -8.133e-6 

0.1149 

8.8102e-6 

0.1030 

5.1791 

<0.0001 

6.071e-4 

0.0002 

4.4185 

<0.0001 

0.5666 459.74 476.95 
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3 N/A N/A 8.0806e-6 

0.1352 

4.5565 

<0.0001 

5.05e-4 

0.0006 

4.6496 

<0.0001 

0.5588 460.15 474.56 

4 N/A N/A N/A 4.8613 

<0.0001 

6.757e-4 

<0.0001 

4.5403 

<0.0001 

0.5516 460.30 471.89 

5 N/A N/A N/A N/A 1.02e-4 

<0.0001 

0.1882 

<0.0001 

0.3337 515.23 523.97 

Similarly, Table II reveals a similar pattern, with Models 1 and 4 exhibiting no significant 

statistical difference, while Model 5 performs significantly worse after removing the vegetation 

proxy index indicator. However, it is noted that in models 1 to 4, AICc gradually increases, 

while BIC decreases with the reduction of variables. Considering both trends, we confidently 

conclude that Model 3 provides the best fit, with relatively low AICc and BIC values. 

Furthermore, Fig. 8 (a) and (b) illustrate the comparison between the predicted values from the 

generated models and the actual values of outage event count (Y1) and affected customer 

number (Y2), respectively.  

  
(a) Outage event count (b) Affected customer number 

Fig. 8 Comparison of predicted and actual value  

5.4  Prescriptive tree trimming 

The process of recommending trimming areas is conducted at the pixel level, enabling 

detailed and precise trimming suggestions to achieve desired (post-trimming) benefits. Based 

on observations from the map, it has been noted that areas covered by forests typically exhibit 

NDVI values greater than 0.7, while grasslands or bushes have NDVI values lower than 0.6. 

Using this information, the recommended trimming areas are identified as regions covered by 

line segments and pixels with NDVI values equal to or greater than 0.7. To calculate the length 

of the trimmed area (𝐿𝑡𝑟𝑖𝑚) along the line (𝐿𝑡𝑜𝑡𝑎𝑙), the proportion of pixels to be trimmed (𝑁𝑡𝑟𝑖𝑚) 

to the total pixels on the line (𝑁𝑡𝑜𝑡𝑎𝑙) is used, as shown in equation (10). 

𝐿𝑡𝑟𝑖𝑚 = 𝐿𝑡𝑜𝑡𝑎𝑙 × 𝑁𝑡𝑟𝑖𝑚/𝑁𝑡𝑜𝑡𝑎𝑙 (10) 

This study considers two trimming patterns: narrow and wide trimming. Narrow trimming 

targets only the 3m x 3m area on the power line, while wide trimming covers a 9m x 9m region 

within the power line corridor. NDVI values in the trimmed pixels are reduced to 0.6. Trimming 

lengths along 1/2/3 phases of overhead lines are recorded for both trimming methods, as shown 

in Fig. 9. The recommended trimming areas along power lines are depicted in grey, with white 

and blue line representing power lines with vegetation proxy index below and above 0.7, 

respectively. Predictions for outage events and affected customers are made based on the new 

NDVI values and compared with the counts before trimming. Results in TABLE IV show the 

percentage reduction in outages and customer losses for each trimming approach.  
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Fig. 9 Distribution lines with vegetation proxy index and recommended trimming area 

TABLE III  Trimmed length (mile) of narrow trimming and wide trimming areas 

Trimmed line type  Total Length  Narrow Trimmed Length Wide trimmed Length  

1phase_OH 619.0 349.0 373.2 

2phase_OH 850.7 433.9 474.0 

3phase_OH 985.5 378.9 423.9 

TABLE IV  Estimated reduction of outage events and number of affected customers 

Variables 
Total 5-year count 

(before trimming)  

Narrow trimming  Wide trimming  

Prediction Reduction Prediction Reduction 

Outage_Event_Num 9369 8,688 7.1% 7,058 24.8 % 

Affected_Customer_Num 1,082,445 979,791 9.2% 746,156 31.2% 

The results indicate that the trimmed length along the distribution power lines is 

approximately half of the total length for 1/2/3 phase overhead lines. Narrow tree trimming 

leads to a 7.1% reduction in outage events and a 9.2% decrease in affected customers. On the 

other hand, wide tree trimming has a more significant impact, resulting in a 24.8% reduction in 

outage events and a 31.2% decrease in affected customers, but comes at a higher tree trimming 

cost. This prescriptive analysis is instrumental in decision-making processes for vegetation 

management. It provides valuable insights into the potential benefits of tree trimming in the 

recommended areas, allowing distribution system operators to assess the effectiveness of these 

actions in reducing the risk of outages and minimizing customer impact. 

6. CONCLUSION  

This paper presents a prescriptive and proactive vegetation management framework using 

lower-cost high-resolution satellite NDVI imagery for resilience planning of distribution 

systems. The results of the case study in Puerto Rico show that the vegetation exposure level 

of the power lines is effectively quantified using the proposed vegetation proxy index and can 

be effectively used to construct prediction models, such as the Poisson log-linear regression 

model, to predict the vegetation related outage risks and prescribe the most cost-effective 

measures to improve reliability and resilience of the system. The initial results highlight the 

promise of integrating vegetation factor into the outage risk prediction. In the future, our work 

will focus on improving the model accuracy using deep learning techniques to fit in a broader 

data-driven outage prediction framework to enhance electric grid resilience in Puerto Rico. 
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