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SUMMARY

To overcome the drawbacks of the existing post-mortem inertia estimation approaches, this paper
proposes an innovative algorithm for online ambient data-based regional inertia estimation. Inputs of
the algorithm are the PMU measurements of tie line powers, locations of the machines inside the region
of interest, available frequencies, and voltages, as well as the network admittance matrix. By utilizing
voltage measurements, the algorithm estimates the load power response and subsequently determines
the regional total import/export active power. Moreover, an aggregate acceleration power AP is
estimated using an aggregate governor model. The dynamic states of rotor speeds are derived from the
available frequencies, and a regional equivalent rotor speed, denoted as @, is calculated. Estimated
quantities are processed through a sliding window with controlled length, resulting in a sequence of
inertia estimates. Each sliding window trains a transfer function model using system identification
technique, which governs the relationship between AP and @, to estimate a potential value for inertia.
Various estimated values are validated and combined to obtain a final estimate. The algorithm
performance has been evaluated using ambient data from the 2000-bus synthetic Texas grid model. The
results demonstrate robust behaviour across different case studies.
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1. Introduction

As utilities are transitioning towards a low-carbon future, there are increased concerns around system
reliability, especially frequency security, which is a key component of reliable system operation. With
the increasing penetration of inverter-based resources (IBRs) that continue to displace conventional
synchronous machines, the overall system inertia is reduced, and this directly impacts the rate of change
of frequency (ROCOF) that the power system is exposed to immediately following a disturbance. Higher
ROCOF allows less time for frequency response services to act and hence threatens frequency load
shedding (UFLS) or in more severe cases, system separation. Utilities worldwide have established
planning procedures and operational constraints in the form of ROCOF constraints or critical inertia
floors to accommodate existing equipment withstand and available reserve capabilities.

In this context, utilities monitor system inertia in their control rooms in real-time and look at forecasts.
Estimating or measuring inertia accurately in real-time allows system operators to manage the grid and
efficiently procure frequency response services. However, most of the control room inertia monitoring
at this time is based on online EMS telemetered generating stations where the system inertia is the sum
of the inertia of the machines that are synchronized at a specific time instant. Estimates from EMS-
monitored generation do not account for the demand side inertia contribution from large industrial loads
and demand side generation (e.g., embedded synchronous generation; combined heat and power plants
that are not monitored in the EMS). In some cases, as in National Grid in Great Britain, this contribution
has been found to be substantial, where the demand has been found to have an inertia constant of 1.832s
[1]. Moreover, island systems like EirGrid in Ireland have registered high variability at daily and hourly
demand side contribution to inertia [2].

In the context of the non-uniform expansion of IBRs, further concerns arise over regional inertia pockets,
inertia centers separated by weak transmission lines. In such a scenario, the single-frequency models
that many utilities still use for certain security assessments may no longer hold valid [1]. Considering
these concerns, accurate real-time inertia estimation has gained significant interest in recent literature.
Current industry practices and the latest inertia monitoring and estimation research have been
summarized in [3]. Inertia estimation techniques can be broadly divided into large event-based
techniques, which rely on large system events and can only be used for validation as postmortem [4],
and wide area measurement-based techniques, which operate online based on ambient variations [5] or
depend upon a modulated signal that is injected into the system [6]. In [7], event data is used for system
inertia estimation, and the performance of inertia estimation for three different C37.118 compliant
phasor measurement units (PMUs) are compared and found to be sufficient to support inertia estimation.
In [8], system inertia is estimated based on outage scenarios using dynamic regressor extension and
mixing. In [9], an autoregressive moving average exogenous input (ARMAX) model is used to estimate
system inertia using PMU data and in [5], ARMAX models are used to estimate regional inertia. In [10],
an alternative method that uses ambient data to estimate the regional concentration of inertia is
presented. Furthermore, a continuous area-inertia measurement approach, capable of measuring area
inertia and its implementation in the GB system, is discussed in [11].

This paper proposes a novel algorithm for application in real-time inertia estimation using ambient data.
The method can be used for both system level and regional inertia estimation, where regional inertia
refers to the cumulative contribution from a group of tightly coupled generators in a portion of the
network that is weakly coupled to the rest of the system. The method is based on training a sequence of
ARMAX models using estimated total import/export electrical power to/from the region, estimated
governor response using an aggregate governor model, and calculated equivalent regional rotor speed
from the available PMU frequencies. The proposed method requires notably fewer ARMAX models
than [5] and the testing presented here indicates that it is far less sensitive to its parameterization than
the method presented in [12]. Multiple case studies are performed to demonstrate the method
effectiveness, and the proposed method is tested under different operating conditions.

This paper is structured as follows, Section Il outlines the proposed algorithm and illustrates its different
components, a case study is presented in Section Il where results are discussed. Finally, Section VI
concludes the paper.



2. Proposed Approach

This section illustrates how the proposed approach uses the available synchrophasor measurements to
estimate the regional inertia. A general framework of the proposed approach is presented in Figure 1.
The figure depicts the inputs to the algorithm, the estimated inertia as an output, and the processes
embedded in between, including a load response estimator, governor response estimator, a rotor speed
estimator, and an ARMAX model identification of the swing equation.
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Figure 1. An overview of the proposed approach

2.1. Overview

The proposed method is an ambient data-based framework that can identify an equivalent swing
equation for a sliding time window, as shown in Figure 2 and (1). An ARMAX system identification
(ARMAX-SID) is used to define the underlying dynamics between the active power imbalance (AP)
and the regional equivalent rotor speed (wco;)-
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Figure 2. Equivalent swing equation
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where P, (t) denotes the mechanical power, P;;.(t) denotes the tie line powers imported/exported
to/from the region, and P;(t) denotes the region load power. P;;.(t) + P;(t) represents P,(t).

Unlike the tie line power, mechanical power cannot be measured, and the frequency responses to load
noise/variations and distributed energy resources (DERs) uncertainties need to be estimated. This is
done through a regional-level aggregate governor model where the estimation sensitivity to the model
parameters is studied and the calculated AP is exported to the ARMAX-SID. Moreover, the regional-
level equivalent rotor speed (w¢(;) is calculated from a set of actual/virtual rotor speeds that need to be
estimated.

The ambient data measured by PMU devices inside the region and on the tie-lines connecting it to the
rest of the system are the inputs of the algorithm. Network data specifying a certain topology is also
required for the estimation processes. The former is a limited set of the available frequency and voltage
measurements in substations within the region of interest and a complete set of active power
measurements from the boundary tie lines importing/exporting electrical power to/from it. While the
latter includes the network admittance matrix, location of PMUSs, location of the generation devices, an



approximate estimation of the aggregate load power in MV A inside the region, and aggregate governor
model parameters, i.e., the installed capacity, an equivalent droop constant, and a dead-band if exists.

2.2. Estimation of equivalent regional rotor speed

For accurate inertia estimation, it is required to estimate the actual rotor speeds of the connected
synchronous machines inside the study region or alternatively monitor/estimate the frequency at the
point of interconnection of a non-synchronous device to its terminal bus and estimate its equivalent
internal frequency (virtual rotor speed). Once the actual/virtual rotor speeds are estimated, an equivalent
regional rotor speed @, is calculated. This &g, is different from the COIl frequency traditionally
used in literature from the perspective that the traditional arithmetic mean of rotor speeds does not
account for local frequency oscillations which are captured by our estimated equivalent &.p;. This
guarantee capturing the frequency regulation from all connected generation devices or flexible loads
and avoids the inertia estimation errors resulting from using frequencies instead of directly using
frequencies for the estimation process. Since rotor speeds cannot be measured, a dynamic state
estimation is implemented to get the rotor speeds from the network frequencies.

For this purpose, the algorithm implements a must-monitor/estimate bus locator to identify effective
local points in the network where frequencies must be monitored with PMUs. However, since the
measurement data is only a limited set of network frequencies, the algorithm implements a frequency
divider formula (FDF), proposed by [13], to first estimate the required missing frequencies (if not
already monitored by PMUs), and then estimate the actual/virtual rotor speeds of the connected
synchronous/non-synchronous devices.

The must-monitor/estimate bus locator utilizes the connectivity of the network, i.e., the connectivity of
generation devices to the network using the topology information represented by the admittance network
Y,us and the location of the generation devices. The required unmonitored frequencies along with the
rotor speeds are estimated using the FDF which is discussed below.

The basic idea behind the FDF is considering the transmission system as a continuum [14] where the
frequency changes at each point along the lines with some boundary conditions that must be satisfied.
These frequency changes are governed by a divider formula like voltages and currents divider formulas.
The boundary conditions that must be met by the frequency variation along the lines are the internal
frequencies of the generation devices/DERs/flexible loads behind an equivalent transient reactance. The
derivation from principles starts from how the current injections and bus voltages are linked through the
admittance matrix of the network. This is the reason why the operator needs the knowledge of ;,,,; at a
certain topology and keep it updated after topology changes. However, the scope of this paper is the
ambient data-based inertia estimation so the assumption of having Y, reasonable. The detailed
analytical derivation can be found in [13] and [15], while here we directly implement the FDF with
discussing in detail the modification we made for our application.

To clarify the concept, consider Figure 3 where a synchronous machine G; is represented by an electro
motive force (emf) with an internal frequency wg, behind a transient reactance x,; which connects it to
a low voltage terminal bus BG;. Note that the internal frequency (rotor speed wg,) and, most probably,
the low voltage terminal bus frequency fp, are not monitored and must be estimated. Further, the low
voltage terminal bus is connected to a monitored, as an assumption, high voltage bus with frequency
,;lgi which in turn is connected to monitored buses with frequencies fg , fg,, ..., fg,. In Figure 3,

frequencies at blue coloured buses are assumed to be monitored while those of the black coloured buses
are unmonitored and hence need to be estimated. The must-monitor/estimate bus locator determines the
required buses using the admittance matrix which gives information about the connectivity of the
generation device and its terminal buses.



Figure 3. Clarification of the FDF concept with a general configuration

Assuming that y};gi =y1 + Y2+ + Yk + Yiry, 1.6, the self-admittance of the high voltage terminal
bus. It follows from the FDF that the high voltage bus frequency is approximated by (2) which gives an
insight of how the method can determine the effective locations of PMUs to know the required local
frequencies and estimate the frequencies which are not monitored.

yggi X th&]i = Yir; X fpe; t Y1 X [, + Y2 X fp, + -+ Y X [, ()

where, i = 1,2, ...,n,4 such that n, is the number of connected devices which are required to get its
contribution to the frequency regulation.

For the sake of generality, let M denote the limited set of network buses which are monitored, and the
operator can observe their frequencies, voltages, and line powers. Let U denote the set of unmonitored
buses, U* is the set of unmonitored buses and selected by the must-monitor/estimate bus locator. Let the
B denote the full set of network buses. The relationship between these sets can be mathematically
expressed as follows.

B=MuU 3
According to (3), the admittance matrix of the network is rearranged and written in (4).
_ YMM YMU)
Ybus a (YUM YUU (4)

The dimension of the admittance matrix can be reduced according to the necessary local buses given by
the must-monitor/estimate bus locator where the new reduced matrix Y;¢¢ represents the study region
asin (5).
Y; Yyuu
red _ MM MU
55 = (e v ) ©)

Note that the dimension of Y72 is less than that of Y, since, for regional estimation, U* c U. It
follows that (2) can be generalized as given below in (6).

—Yum X fm = Yuu* X fur (6)
and frequencies of the unmonitored set are approximated via (7).
fv = —YAJ;U* X Yum X fu (7

where fy = [fr, (O fin, (&) . fmj(t)]T, and fyr = [fu,(® fiui, O .. ful(if)]T are the
frequencies of the j buses of the M set, and the [ buses of the U* set respectively and T is the matrix
pseudo inverse. After estimating the necessary frequencies fy+, the rotor speeds can be estimated each
as an internal bus frequency behind the transient reactance. The setup for the rotor speed estimation is
given below.



Let h denote a set of hypothetical buses different from those of the network. A hypothetical bus is a bus
that is virtually located behind a transient reactance in case of the synchronous machine or behind an
equivalent impedance that can be determined by the operator for each non-synchronous generating
device depending on its capacity and dynamic behaviour [16]. The frequencies of the h set are the actual/
virtual rotor speeds. Following the same procedure, a new admittance matrix can be extracted now with
further dimension reduction to represent the generation devices in the study region. Let Y,¢, . denote this
generation admittance matrix which can be written in terms of the internal buses set h and the terminal
buses set T = {T,, T{**, T,, T}’ ...,Tng,T,{’;}. Note that the terminal buses T;, T;*” for the i*" generation

device are Bg; and B(’}f as depicted in Figure 3. In practice, BG” € M (monitored) while B, € U*
(unmonitored but estimated with (7)) and T € U*. The Y, is given as follows.
Yir Y
G _ TT Th
Ybus - <YhT Yhh> (8)
In (8), Y71 is calculated by modifying Yy with the internal equivalent impedances such that:
Yir =Yrr + Y5 ©)

Y is a diagonal matrix with the same dimension as Y; and its main diagonal entry is 1/x; if the
generating device is installed on the corresponding bus and zero otherwise. Yr, (T;, h;) has a nonzero
entry equal to 1/x); if the i*" generation device (with internal bus h;) is connected to the terminal bus
T;. Yy, is a square diagonal matrix where the entry corresponding to the it* generation device equals
—1/x};. Finally, Y, = Y7,. The rotor speeds can be estimated as given by (10).

= hYTTXfT (10)

The regional equivalent rotor speed aw, is calculated as the arithmetic mean of the estimated rotor
speeds. If the region has ng,, large synchronous machines with known inertia constants

Hy, Hy, ... Hy, 1O the operator, the calculation of the @, can be improved using (11).

Nsyn ng
R 1
Wcor = avyg nsyn a)Gn X H, |, —— wg, (11)
9 syn n=ngyn+1

Once the proposed equivalent rotor speed frequency is estimated, it can be exported to the governor and
load models which are discussed in the next subsection.

2.3. Estimation of active power mismatch

The main task in this subsection is to estimate the time series of the active power mismatch for each
time window, i.e., AP!(t). This is mathematically assumed to be as follows.

APY(t) = P () — FX(D) (12)

An aggregate governor estimates the active power imbalance in the region based on the boundary power
flow and equivalent frequency @.o;, as summarized in Figure 4. The dashed boxes denote data vectors
of the i*"* time window. The time frame of each sliding time window includes the pre-analysis time T,,,.,,
the post analysis time T}, and the gap duration T,,,, between them if exists. Accordingly, the i*"

Tgap
sliding window for active power in Figure 4 is separated into two blocks (Tyq, = 0): Pt‘l-e'pre , and
P“-e,post, and the same is true for the frequency, @%, Lpre DL, 1.post and the average of voltage variations

in a limited set of high voltage buses v;;re, and v;',ost. An estimation time T,,; is defined by the user to

govern the moving length of the sliding window. In other words, the pre, gap, and post analysis of the
data is repeated after nT,;; where n = 0,1, ..., and so on.
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Figure 4. Block Diagram of the power mismatch estimation

It is assumed that the region is balanced with mechanical power equal to Ft"l-e + Py, during the pre-time
analysis of each time window i. Such that P}, is the average of the tie line power during Tyre Of the ith

time window while Py, is an aggregated load power which is a constant MW for the study region and
could be known to the operator.

Any following change in mechanical power is determined by the frequency change in the region during
Tpost Period and denoted as ﬁ,"n'f to represent the frequency sensitive component of P}. A delay in the
realistic governor response can be represented. The average of @¢o ,ye IS Used to correct depp pose for
the frequency deviation during the T, (e.g. if the average of DLy 1,pre 15 59.95 Hz and the frequency in
the first sample of a'co,,,,ost is 59.94 Hz then A®%,, considered by the imbalance estimation for the first
sample will be 0.01 Hz). This is necessary to avoid double counting of the governor response for this
pre-existing deviation (once in P,fl-e and again in 13,",1' ) due to the assumption that the system is balanced

at the start of the post-time window. Note, this process is resilient in the presence of frequency control
response FCR provided by non-synchronous resources, e.g., battery energy storage, as they will directly
impact the measured electrical power.

Furthermore, the aggregate governor parameters of dead-band and gain need not be highly accurate and
can be based on the standard grid code requirements. On the other hand, the electrical power for a

specific time window, see Figure 4, is represented by the tie line power Pt"l-e,post, and the changes in the
load power AP} during Tyost- Mechanical and electrical power of each time window expressed as:

BL(t) = Pli(t) + Pyo + Pl (1) (13)

ﬁei @) = Ptiie,post ) + Apli(t) (14)

The load response AP} is estimated using the PMU voltage measurements which is used along with an
approximated ZIP load model, for simplicity in this study, to account for variations of the load power
during different time windows. Given load model parameters, the constant power coefficient B,, the
constant current parameter P;, and the constant admittance load P,, AP} (t) is mathematically described
for a specific it" time window as:

AP{(t) = Py X [P, + P x vt + Py x Av?’| (15)
Av' is the voltage variations for the it time window, i.e., the difference between vzijost and 7.

2.4. ARMAX system identification and inertia estimation candidates

The developed method uses an ARMAX-SID for the purpose of identifying the dynamics between the
®cor, and AP. ARMAYX, i.e., Autoregressive Moving Average with Exogenous inputs is a type of time-
series model used for prediction and forecasting. It is an extension of the ARMA (Autoregressive
Moving Average) model that incorporates additional exogenous (external) variables that may influence
the time series being analysed. ARMAX models are characterized by the order of the autoregressive
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component, the order of the moving average component, and the number of exogeneous variables. The
ARMAX model can be expressed mathematically as follows:

y(©) =0;y(t — 1) + O0,y(t — 2) + -+ 0,y(t — p) + B1x1(£) + Brx,(t)
+ o4 B (t) + €(t) + et — 1) + et —2) + - (16)
+ (pqE(t - Q)

where: y(t) represents the time series being modelled, x;(t) represents the exogenous variable i at time
t, 8's are the autoregressive coefficients, f's are the coefficients for the exogenous variables, €(t)
represents the white noise error term, and ¢'s are the moving average coefficients for the error term.

ARMAX is preferred over other methods, e.g., AR (Auto-Regressive), ARX (autoregressive with
exogenous terms), ARMA (autoregressive moving average) since ARMAX is the most comprehensive
model amongst these options [5], [9]. Its output is characterized as the sum of three regression terms
containing past input, output, and disturbances, whereas the other methods only comprise two of the
three terms. The exogeneous variables gives the ARMAX the advantage to represent uncertainties in the
power system such as load changes, and renewable energy.

Data (@co;, and AP) are inputted for the ARMAX-SID and ARMAX models (equal to the number of
user-defined sliding time windows) are trained. ARMAX models are trained with AP as an exogeneous
input and @, as an output. A polynomial model is identified for each time window and coefficients in
(16) are calculated. The i*" identified ARMAX model is used to get the frequency response w;'tep of a

unit step change in AP and ROCOF is calculated for each time window as %wgte,,. The traditional

swing equation, see Figure 2, is used for the ROCOF calculation and hence the inertia estimation.
Although this is the traditional form of the swing equation, it is used in this context with the estimated
signals of @q;, and AP which makes the inertia estimated is the effective inertia that relates the local
frequency deviations with the power mismatch. The estimation candidate for each time window could
be calculated using the initial value theorem as given in (17).

L. =05

d (7

Ewsiteplt=0
Alternatively, a second order curve fitting could be implemented for the generated model outputs

%w;'tep (t) where the initial value of the fitted parabola is considered the candidate estimate. This can

reject the imperfect models that produce poor estimates.
2.5. Data buffer and sliding windows

The methodology is based on the serial processing of a data buffer (with length of b seconds) that is
refreshed every r seconds. The method processes each buffer and then based on this, updates the regional
inertia estimate every r seconds. The data buffer is broken up into N sliding windows of frequency,
voltage, and active power data, each of which is used to calculate a candidate inertia estimate. The set
of N candidate values are blended to create a final estimate of inertia that represents the result for this
data buffer. Here the blending process simply entails taking the mean of the estimates after discarding
those estimates below the 5" percentile and above the 95" percentile of the estimate range.

3. Case study on synthetic Texas grid model

The performance of the developed method is tested via different test cases and operating scenarios. We
limit our presentation to a relatively large and practical Texas test system. Simulations are conducted
using the commercial software PSS/E which can efficiently perform dynamic simulations of large-scale
power systems.

3.1. Study system

The 2000-bus synthetic Texas grid model has been built from publicly available information by Texas
A&M University [17]. The system has 544 generating devices (among which 87 renewables), and 1350
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Figure 5. Synthetic Texas grid model: A map of the electrical regions

loads. As shown in Figure 5, the system is divided into 8 areas. The South area is selected as the study
region, in which there are 41 in-service synchronous generators with 7,448 MVA in capacity. Each
synchronous generator has a governor model without dead-band, and the droop is 4% or 5%. There are
11 renewable generators with totally 2,512 MVA in capacity in the South area. Each renewable
generator is modelled by the WECC generic converter model and electric control model. No inertia
contribution from these renewable generators. The total load in the South area is 6,751 MW. Also, there
are 25 tie-lines between the study region (South) and its neighbour regions (West, South Central, and
Coast). The ground truth total rotating inertia of the southern region is 34,610 MVAs. A load in Coast
area is modulated to mimic 250 s long ambient data measurements. The PMU reporting rate is 30 Hz.

3.2. Inertia estimation results

Machines low voltage terminal buses are unmonitored, and their frequencies need to be estimated
through the FDF. The FDF is again used to estimate rotor speeds from the set of observed/estimated
frequencies, and finally their arithmetic mean @ o, is calculated. Figure 6 shows &y, versus the
average of the available frequencies. Although the difference between them, with ambient data, is not
significant, the inertia estimation is impacted when using the frequency instead of &(;. The estimated
governor response, and the frequency variations of the 15¢ time window (Tpre = 10's, Tpost =
30's, & Tgap = 0) are depicted in Figure 7. This is obtained with a linear governor model with droop
constant of 5%, zero dead-band, and installed capacity of 7500 MW. Voltages are used to estimate the
aggregate load variations of the study region with an assumed static load model of 20% constant power
load, 30% constant admittance load, and 50% constant current load. The estimated load response P; for
the 15t window is shown in Figure 8. The estimated &¢o; and AP are inputted to the ARMAX-SID and
the inertia estimates are depicted in Figure 9.
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Figure 6. Actual/estimated equivalent rotor speed versus the average of monitored frequencies.
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Figure 9. Inertia estimation for sliding time windows

The inertia estimation results with different scenarios are given in Table 1. The addressed scenarios
depict the performance of the proposed method with the governor response estimation, the load response
estimation, the estimated rotor speed, and finally the impact of those on the estimated inertia. Using only
tie-line powers and ignoring the load response, which is approximated here by its voltage dependency,
impacts the results and causes underestimating the inertia, see Scenario #4. On the other hand, direct
use of frequencies of the network without approximating the internal rotor speeds causes an
overestimation of the inertia (Scenario #3). The governor model with its parameters, i.e., dead-band,
droop constant, installed MW capacity contributes in accurately estimating the power imbalance.
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Table 1. Inertia estimation results

Scenario | Governor response Voltage-dependent Rotor speed i Mws) Error
NO. estimation load estimation estimation (%)

1 Deactivated Deactivated Deactivated 76,579 121.0

2 Activated Deactivated Deactivated 70,264 103.0

3 Activated Activated Deactivated 41,624 26.0

4 Activated Deactivated Activated 29,765 -14.0
5 Activated Activated Activated 34,794 0.5

4. Conclusion

In conclusion, this paper proposes a novel algorithm designed to estimate regional inertia in real-time
using ambient data. By combining ARMAX based system identification, an efficient governor
approximation, an aggregate load model that adapts to ambient changes, and a dynamic state estimator
capable of estimating internal frequencies and rotor speeds, the proposed method offers continuous and
accurate estimations without the need for specific events. The application of this methodology on the
Texas grid model 2000 bus system demonstrates its excellent performance. Furthermore, the study
investigates the impact of each component by deactivating/activating them and assessing their influence
on estimation accuracy. The results highlight the significance of the aggregate load models in estimating
load response and emphasize the efficacy of the rotor speed estimator in effectively approximating the
virtual regional equivalent rotor speed. Overall, the proposed method represents a valuable contribution
to the field of inertia estimation, offering a simple parameterization and a robust solution for real-time
estimation of regional inertia using ambient data.
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