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SUMMARY

Vegetation, particularly trees falling or growing into overhead power lines, is the leading cause of
electric power outages in the United States. It significantly impacts power reliability, especially in
regions with dense forests like Puerto Rico. To address the issue of vegetation-related outages, the paper
presents a prescriptive vegetation management framework to mitigate vegetation-related power outages
in distribution systems. The study aims to enhance power reliability and resilience by leveraging
historical utility outage data, high-resolution NDVI (Normalized Difference Vegetation Index) satellite
imagery, and advanced analytics. Specifically, this paper uses NDVI values, which indicate vegetation
density, to develop a vegetation proxy index for each line segment. The index accounts for distribution
line segment neighbouring area’s impact on power lines and provides detailed information on vegetation
exposure along the line segments. The study demonstrated ability to predict outage events and affected
customer numbers based on variables - such as line length, customer numbers, and the newly introduced
vegetation proxy index — using Poisson log-linear regression. The regression models’ performance was
evaluated using AlCc and BIC criteria, with the results showing that the model parameters contribute to
the model's accuracy with statistical significance. To mitigate potential risks of vegetation-related
outages, the study recommended tree trimming in specific areas based on the vegetation proxy index.
Two tree trimming approaches, narrow and wide, were considered, and their impact on reducing outage
events and affected customers was predicted. This creates an opportunity to optimally plan tree
trimming, assuring the highest return on invested capital in terms of SAIDI/SAIFI reduction. The results
validated the expectation that wide trimming had a more substantial effect on reducing outages and the
number of affected customers. The presented work demonstrated the potential of using lower-cost high-
resolution satellite imagery and advanced analytics to predict vegetation-related power outages and
develop prescriptive vegetation management strategies. With a developed predictive vegetation-related
outage model, distribution system operator in Puerto Rico can make informed decisions on tree trimming
— where, how deep, and when to trim trees - to enhance the system's reliability and resilience at the
lowest cost to the ratepayers.
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1. INTRODUCTION

According to the Federal Energy Regulatory Commission (FERC), vegetation, especially
trees that grow or fall into overhead power lines, is the primary cause of electric power outages
in the United States. This issue significantly impacts power reliability, particularly in tropical
regions like Puerto Rico, where over 59% of the area is covered by forests [1]. In 2018, a single
fallen tree on a power line resulted in a massive power outage affecting approximately 900,000
customers in Puerto Rico, leading to significant economic costs [2]. Data from LUMA, the
utility company, reveals that vegetation-related outages in Puerto Rico’s distribution networks
accounted for a substantial 19% of the total outages between 2017 and 2022 due to the high
exposure to trees.

LUMA has engaged Quanta Technology to help design cost-effective solutions that
improve power reliability and resilience in Puerto Rico. With a deep understanding of the
challenges LUMA is facing, Quanta Technology developed a data-driven, prescriptive
vegetation management framework by leveraging historical data and advanced analytics,
aiming to prevent outages and build resilient distribution systems. In light of the significant
impact of vegetation on power outages, it is crucial that the next phase of resilience planning
addresses the urgent challenges related to vegetation by better assessing, quantifying potential
risks, and prescribing solutions to vegetation-related vulnerabilities.

To mitigate potential risks of vegetation before they cause outages, utilities traditionally
conduct periodic tree trimming that involves regularly scheduled maintenance where utility
crews proactively trim trees in predetermined areas along power lines. However, determining
the trimming regions typically relies on manual patrols or helicopter inspections, which is
extremely exhaustive and time-consuming [3]. New sensor technologies, such as LIDAR (Light
Detection and Ranging) [4] and vision sensors [5] has been deployed to vegetation monitoring
system for strategic defense of power infrastructures. Vegetation height and the encroachment
to power lines are estimated in [5] using image data from vision sensors mounted on power
towers deploying stereovision and deep learning techniques. While proven effective in
transmission systems, such methodology has not been successfully applied at a granular level
on a distribution system in a cost-effective fashion.

Airborne LIiDAR has been used in [6] to collect vegetation height and GIS (Geographic
Information System) data for predicting vegetation-related outages. However, in distribution
systems, the use of drones for scanning along the extensive network of distribution lines is time-
consuming and costly. Over the past few years, there has been a noticeable decline in the cost
of launching satellites, leading to a proliferation of satellites and mini-satellites that are
equipped with advanced sensors. Therefore, the cost of commercial satellite imagery has
significantly decreased, enabling access to high-resolution images and extensive global
coverage. A recent study in [7] use high-resolution satellite imagery to monitor the vegetation
proximity to the power lines based on image processing and neural network techniques.
However, this study only discusses monitoring system and does not provide an outage
prediction methodology. Several studies have been conducted to predict vegetation-related
outages using analytical and data-driven approaches [8-11]. These studies have focused on
modeling the impact of tree trimming on vegetation-related failures and predicting feeder
failure rates. Nevertheless, they either neglect to utilize vegetation indices [8] or employ them
directly as measured [9-11], lacking an analytical interpretation of vegetation image data to
accurately quantify the vegetation exposure of power lines at high resolutions and its impact on
outages for detailed and accurate analysis of outage risks at the feeder level. Additionally, these
studies do not include predictions of the number of affected customers during distribution
system outages.



In this paper, a comprehensive case study in Puerto Rico is conducted to predict vegetation-
related outages in distribution systems using lower-cost, high-resolution satellite NDVI
imagery and historical outage data. The study includes the development of a Gaussian kernel-
based vegetation proxy index, derived from NDVI values, to accurately quantify the vegetation
exposure of power lines. The impact of various indicators — such as distribution line
characteristics (e.g., line length, number of phases in a line section), number of customers, and
the newly developed vegetation proxy index - on vegetation-related outages and the number of
customers affected are investigated. Statistical models using Poisson log-linear regression are
generated to predict the number of outages and affected customers due to vegetation. By
employing the established models, distribution system operators can estimate the impact of
vegetation control measures, such as tree trimming, on outage and customer loss reduction. This
predictive capability enables them to make informed decisions on prioritizing tree-trimming
activities across the regions and in specific areas, ultimately leading to a more effective capital
spent on a resilient and reliable distribution system with minimized vegetation-related outages
and customer disruptions.

2. USE CASE AND DATA DESCRIPTION

The study is conducted in partnership with LUMA, the power distribution system operator
in Puerto Rico. It focuses on the Northwest area of the distribution network, which encompasses
both urban business areas and rural regions, including agriculture fields, forests, and water
streams, as shown in Fig. 1. Various datasets were collected, including satellite imagery,
distribution system infrastructure data, and outage records specific to the studied area, as
described below.

Fig. 1 Studied region in Puerto Rico (images from google earth)
2.1 Satellite NDVI imagery

This study uses four high-resolution satellite quarterly NDVI images captured in March,
June, September, and December in 2022, as shown in Fig. 2.

(a) Mar. 2022 (b) Jun 2022 (c) Sep. 2022 (d) Dec. 2022
Fig. 2 Satellite NDVI images captured in 2022

These images have a consistent pixel size of 3 meters per pixel and encompass NDVI
values ranging from -1 to 1. The NDVI values commonly used to detect vegetation in remote
sensing and is computed by measuring the difference between the near-infrared light (NIR),



which is strongly reflected by vegetation, and the red light (RED), which is absorbed by
vegetation, as illustrated in (1) [7].
vpyy = VIR = RED
" NIR + RED (1)
The high-resolution NDVI maps provide substantial vegetation data that allows detailed
investigation and quantification study of vegetation impact on distribution feeders.

2.2 Power infrastructure and outage data

The GIS data of the line segments reveals that there are 181 feeders within the designated
map region. These feeders account for approximately 10% of the total 1698 feeders operated
by LUMA in Puerto Rico. They include distribution lines with voltage levels ranging from 2
kV to 13 kV, operating in 1, 2, or 3 phases. The dataset focuses on power outages related to
vegetation from 2017 through 2022. In addition, it is disaggregated by individual feeders
including line length data of overhead and underground lines in 1, 2, or 3 phases for each feeder,
the number of customers served by that feeder, and the count of tree-related incidents and
affected customers on that feeder, as described below.

Nomenclature Description

Outage Event Num Total number of outage events in each feeder

Affected Customer Num | Total number of customers whose power are interrupted in each feeder
Length 1phase_ OH Total length of overhead 1 phase power line in each feeder

Length 2phase OH Total length of overhead 2 phase power line in each feeder

Length 3phase OH Total length of overhead 3 phase power line in each feeder

Length 1phase UG Total length of underground 1 phase power line in each feeder

Length 2phase UG Total length of underground 2 phase power line in each feeder

Length 3phase UG Total length of underground 3 phase power line in each feeder
Customer_Num Total number of the customers served by each feeder

The current dataset lacks information on vegetation, which will be generated based on the
satellite NDVI image processing in the subsequent section.

3. SATELLITE IMAGE PROCESSING AND VEGETATION PROXY INDEX

The four seasons' satellite images are merged into a single NDVI image. This resulting
NDVI image overlapped with the distribution network based on GIS data by aligning the image
coordinate system with the GIS coordinate system. The overlapping provides a spatial
correspondence between the NDVI pixels and the distribution network, which is utilized to
generate a vegetation proxy index for every distribution line segment at a high resolution that
can consist of as little as a few line spans.

3.1 Satellite image data processing

While the four satellite image data focus on the same part of Puerto Rico, they still vary in
size and covered regions. To create a comprehensive NDVI map for 2022 and extract as much
valuable information as possible from these images, they are merged into a single map using
the maximum method. Specifically, the four images are pre-processed to filter out the pixel data
outside the NDVI range (-1 to 1). Subsequently, the GIS coordinates of pixels in the four maps
are aligned to generate a new merged image. In this merged image, the maximum NDVI value
is selected for pixels with the same coordinates. By employing this approach, the final merged
NDVI map accurately records the most severe vegetation conditions observed throughout 2022,
which have the potential to affect power lines and cause outages in the studied region. Fig. 3
(@) shows the merged NDVI map, with the NDVI values illustrated in color for better
visualization, in contrast to the greyscale in Fig. 2. Further, the distribution lines are mapped
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on the merged NDVI image based on the GIS data of the starting and ending points of each line
segments, as shown in Fig.3 (b).
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Fig. 3 Merged satellite NDVI map covered with distribution lines

3.2 Vegetation proxy index

After mapping the distribution lines with the NDVI map, the vegetation proxy index is
generated to quantify the vegetation exposure level of each line segment. Fig. 4 uses an example
to illustrate the vegetation proxy index quantification process based on a Gaussian convolution,
which is a common operation and building block for algorithms in signal and image processing
[12].

NDVI map overlap with distribution lines
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Fig. 4 Vegetation proxy index for line segment

To account for the impact of neighboring areas on the power line, a 3 by 3 sliding window
covering a 9mx9m area around the line is created. This window is convolved with a normalized
Gaussian kernel to differentiate the levels of vegetation exposure in the covered areas. The
resulting vegetation proxy index, denoted as V;;.,, represents the quantification of the
vegetation exposure on the iy, pixel of the j., line segment (L; ,) in the my, feeder (F,), as
shown in (2).

Xi—1i-1 Xi-1,i Xi-1,i+1 g11 Y912 Y13
Vl,],m i—1,i i,i i,i+1 * 921 Y22 Y23 (2)
Xi-1i+1 Xi+ti Xirvivil; 931 g3z Gss
G
Aj,m

To elaborate, matrix A4; ,,, contains the NDVI1 values in the 3 by 3 sliding window, with x; ;
being the NDVI value in the i, pixel on the line, and the rest represent NDVI values in
neighboring pixels. Matrix Grepresents the normalized Gaussian kernel, with specific values to
weigh the impact of adjacent pixels appropriately. Specifically, g11, 913, 931, 933 has the same

1 1 -1
value of — 912, 921, 932, 923 has the same value of p and g, is "



By sliding through the line segment pixel by pixel and convolving with the Gaussian
kernel, a new set of NDVI values is generated, forming a vegetation proxy index that indicates
vegetation exposure at the pixel level on the line. This index captures vegetation exposure
across a wider range in the line corridors, providing detailed information for accurate power
line analysis. It is important to note that this vegetation proxy index remains applicable even
when line segments do not align parallelly with the pixels like in Fig. 4 as the approach
effectively considers neighboring pixels that cover adjacent areas, and provides valuable
information for analyzing power lines under varying scenarios.

After generating the vegetation proxy index for each line segment, the next step is to
aggregate this data to obtain the feeder-level vegetation proxy index. This aggregation process
combines the vegetation proxy index values of all the line segments within a feeder to provide
an overall measure of vegetation exposure for that feeder.

4. STATISTICAL MODELING
4.1 Poisson log-linear regression model

Two statistical models are developed to analyze the outage characteristics of the feeders,
utilizing two different outputs: Outage_Event_Num (Y;) and Affected_Customer_Num (Y,) in the
feeder. Poisson regression is usually used for modeling when the response variables are counts
[13]. As shown in Fig. 5 (a) and (b), both ¥; and Y, display a skewed Poisson distribution,
deviating from a normal pattern. Given this non-normality, traditional Poisson linear regression
is not applicable for effective modelling. To address this issue, log-linear regression is chosen
for this paper. This method involves transforming the outputs into their logarithmic form, as
illustrated in Fig. 5 (c) and (d), resulting in a more normal distribution. The transformed outputs
are then utilized as the new response variables for the log-linear regression model. The Poisson
log-linear models with response variables of Y1 and Y> are represented in (5) and (6).

y1 =exp(a; + B11%11 + -+ BreXik) ()
y2 = exp(az + f21X11 + -+ BoxXok) (6)

where y; and y, indicate the vectors of the Outage_Event_ Num and Affected_Customer_Num on
the selected feeders, respectively. The models consist of intercepts (a; and a,) and variables
{x11, .. x5} and {x51, ... x5} for¥; and Y, responses, respectively. The weights for these
variables are denoted as {1 1, ... S1x} and {21, ... B2}
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Fig. 5 Data distribution of event count and number of affected customers from 2017 to 2022



To select the appropriate variables for the models, correlation analysis using the REML
(Restricted Maximum Likelihood) method is performed. This method is commonly used to
estimate the correlation structure in linear mixed models [14]. Variables that exhibit significant
correlations with the response variables will be considered candidates for building the log-linear
models. However, correlation analysis only captures variables with evident correlations with
the responses. To ensure the best model fit, further screening is performed by comparing
regression models with different variables. By doing so, the best-fitting model is identified, and
its corresponding variables are selected as the final determinants for the log-linear models.

4.2 Goodness-of-fit criterion and model comparison

Two different methods are used in this paper to compare the regression models for the data
set, i.e., akaike information criteria (AlCc), and Bayesian information criterion (BIC). The
AlICc is an advanced method derived from the AIC method, which is usually used to evaluate
the model quality by estimating the prediction error [15]. The AIC is defined as (7).

AIC = —In(L) + 2k ()

where k is the number of independent parameters in the model, and L represents the maximized
value of the likelihood function of this model. However, when the sample size is small, AIC
has a tendency to select models with too many parameters, leading to overfitting. To address
this, AICc was introduced to incorporate a correction for small sample sizes. It adds an extra
penalty term for the number of parameters, as represented in (8).

2k? + 2k (8)

AlCc = AIC + ——
¢ +m—k—l

where m denotes the sample size, i.e., the number of studied feeders in the dataset. The
Bayesian Information Criterion (BIC) is similar to AIC but imposes a more substantial penalty
for the number of parameters [16]. It uses the natural logarithm of the sample size (m) to ensure
that fewer parameters are favored for a simpler model, as shown in (9).

BIC = —In(L) + In(m)k ©9)

In model comparison, smaller values of AICc and BIC are preferred, as they indicate better
fit and appropriate parameters for the dataset. The paper uses both AICc and BIC to identify
the most suitable regression model with minimal risk of overfitting.

5. RESULTS

The Poisson log-linear modeling is applied to the dataset, 5 .
which combines the utility data and the feeder-level vegetation :
proxy index data. This statistical approach is applied to analyze the s
correlation between the variables for predicting two crucial factors: 3
Outage_Event_Num (number of outages) and 2-
Affected_Customer_Num (number of affected customers). To [
create these models, correlation analysis is conducted to identify
meaningful relationships between the given variables. :
Additionally, goodness-of-fit evaluation metrics such as AlICc and -1 .
BIC are utilized to assess the models' performance and choose the 2
best-fit models. The generated models are utilized to forecast the  Fig. 6 Data distribution of
potential reduction in outage numbers and affected customer log(——)
numbers. This is achieved by simulating the effects of tree tine tength
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trimming in the recommended vegetation management areas, which result in decreased NDVI
values.

5.1 Outlier removal

To process the data, the initial step is to remove outliers to ensure data quality and accuracy.
From Fig. 5, the data distribution also reveals the presence of outliers for both Y; and Y.
However, removing outliers based solely on the distributions may not be feasible since the
outage event counts and affected customer counts are inherently related to the overhead bare
wire length of the feeders. Shorter feeders with fewer customers may naturally have lower event
outage counts and customer impacts, while longer feeders may exhibit higher counts of events
and affected customers.

To address this issue, a more nuanced approach is taken. Instead of directly removing
outliers, the logarithmic form of the outage event count per mile is utilized as an indicator,

represented by log(m), as shown in Fig. 6. By employing this transformed

representation, outliers in the data can be better identified and analyzed without arbitrarily
removing feeders solely based on their event and customer counts. This allows for a more robust
analysis of the data and ensures that the influence of feeder length on outage characteristics is
appropriately considered. The analysis revealed that 14 feeders as outliers, and they have been
excluded from the dataset. These outlier feeders may have experienced configurational changes
over the past five years, resulting in excessively low or high vegetation-related events
considering the overhead line exposure and feeder customer count today. As a result, the
remaining 167 feeders are used for further analysis and modeling.

5.2 Correlation analysis and variable selection

The correlation between the indicators in the given utility data and the vegetation proxy
index with the model outputs log (Y;) and log (Y,) are analyzed based on the REML (Restricted
Maximum Likelihood) method. Fig. 7 shows the estimation results in a heatmap.
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Fig. 7 Heatmap of correlations

The heatmap analysis reveals noteworthy patterns in correlation between various
indicators and vegetation-related outage events (Y1), as well as their impact on affected
customers (Y2). The line length of overhead lines in 1/2/3 phases (X1, X2, and X3) shows
relatively higher positive correlations (0.4~0.7) with vegetation-related outages and affected
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customers. This finding aligns with expectations, as feeders with longer overhead lines have
greater vegetation exposure potential and are more susceptible to nearby tree contact, leading
to potential outages. Essentially, an increased length of overhead lines amplifies a circuit's
exposure to tree-related issues. Conversely, distribution circuits with underground line sections
in 1/2/3 phases (X4, Xs, and Xe) exhibit low correlation with the outputs (Y1 and Y2). This result
is expected since underground lines are not exposed to vegetation, thus not contributing to
vegetation-related outages.

Additionally, the vegetation proxy index (X7) demonstrates a high correlation with the
feeder's vegetation-related outages, validating the effectiveness of the index generation method
and the significance of considering the vegetation proxy index in this study. This index proves
to be a useful tool in predicting and addressing vegetation-related challenges. Moreover, the
analysis indicates that an increase in customer base (Xsg) significantly contributes to the
heightened exposure to tree-related issues. As the customer base grows, so does the demand for
power, necessitating an expansion of the distribution network, including longer overhead lines
that may encounter vegetation-related challenges. As a result, five indicators with the highest
correlations including the length of 1/2/3 phase overhead line (X1, X2, X3), developed vegetation
proxy index (X7), and the served customers (Xg) are selected as variables for building the log-
linear regression models.

5.3 Log-linear regression models and model comparison

TABLE I and Il shows the estimated parameters of Poisson log-linear models of outage
prediction and affected customer prediction and their p-values. In addition, R2, AlCc, and BIC
are also shown for models with different variables combinations. From TABLE I, it can be seen
that variables X7 (vegetation proxy index) and Xg (served customer) consistently exhibit low p-
values, indicating their statistical significance in the model. Models 1 to 4 have similar R?
values above 0.7 and are not highly statistically distinguishable. Among them, Model 3, which
retains only three variables (X3, X7, and Xg), demonstrates the smallest AICc and BIC values,
indicating the best fit for the dataset. Reducing the number of variables further, especially by
removing the vegetation proxy index in Model 5, leads to a substantial decline in R? and a rise
in AICc and BIC, indicating poorer fitting performance. This highlights the importance and
effectiveness of the vegetation proxy index, which has a significant impact on outage events.

TABLE | Estimated parameters, p-values, R?, AICs, BIC of outage prediction

Model | 11 (X)) | Brz2 (X2) | Brz (Xs) | Bra (X7) | Bus (Xe) Intercept R? AlCc BIC
(ay)

1 -1.734e-6 | -1.185e-6 | 1.0453e-5 | 3.5625 3.75¢-4 0.8755 0.7376 | 286.17 | 306.14
0.3930 0.6784 0.0022 | <0.0001 | <0.0001 | <0.0001

2 N/A -7.009¢-7 | 9.0664¢-6 | 3.4676 3.732¢-4 | 0.9207 0.7362 | 284.73 | 301.94
0.8022 0.0023 <0.0001 | <0.0001 | <0.0001

3 N/A N/A 9.0035e-6 | 3.4139 3.643e-4 | 0.9406 0.7360 | 282.61 | 297.03
0.0023 <0.0001 | <0.0001 | <0.0001

4 N/A N/A N/A 3.7535 5.556e-4 | 0.8188 0.7179 | 290.04 | 301.63
<0.0001 | <0.0001 | <0.0001

5 N/A N/A N/A N/A 6.961e-4 | 2.4893 0.4473 | 383.74 | 392.49
<0.0001 | <0.0001

TABLE Il Estimated parameters, p-values, R?, AICs, BIC of affected customer prediction

Model | B1 (X1) | Baz (X2) | B2z (X3) | Bra (X7) | Bzs (Xs) | Intercept R? AlCc BIC
(az)

1 -7.348¢-6 | -1.018e-5 | 1.4687e-5 | 5.5810 6.15¢-4 4.2273 0.5788 | 457.84 | 477.80
0.0474 0.0511 0.0168 | <0.0001 | 0.0001 <0.0001

2 N/A -8.133¢-6 | 8.8102¢-6 | 5.1791 6.071e-4 | 4.4185 0.5666 | 459.74 | 476.95
0.1149 0.1030 <0.0001 | 0.0002 <0.0001




3 N/A N/A 8.0806e-6 | 4.5565 5.05e-4 4.6496 0.5588 | 460.15 474.56
0.1352 <0.0001 0.0006 <0.0001

4 N/A N/A N/A 4.8613 6.757e-4 4.5403 0.5516 | 460.30 471.89
<0.0001 <0.0001 <0.0001

5 N/A N/A N/A N/A 1.02e-4 0.1882 0.3337 | 515.23 523.97
<0.0001 <0.0001

Similarly, Table Il reveals a similar pattern, with Models 1 and 4 exhibiting no significant
statistical difference, while Model 5 performs significantly worse after removing the vegetation
proxy index indicator. However, it is noted that in models 1 to 4, AICc gradually increases,
while BIC decreases with the reduction of variables. Considering both trends, we confidently
conclude that Model 3 provides the best fit, with relatively low AICc and BIC values.
Furthermore, Fig. 8 (a) and (b) illustrate the comparison between the predicted values from the
generated models and the actual values of outage event count (Y1) and affected customer
number (Y2), respectively.

Actual log(Y,)
w
Actual log(Y,)

0 i 2 3 4 5 6 7 2 4 6 8 10 12
Predicted log(Y,) Predicted log(Y,)

(a) Outage event count (b) Affected customer number

Fig. 8 Comparison of predicted and actual value
5.4 Prescriptive tree trimming

The process of recommending trimming areas is conducted at the pixel level, enabling
detailed and precise trimming suggestions to achieve desired (post-trimming) benefits. Based
on observations from the map, it has been noted that areas covered by forests typically exhibit
NDVI values greater than 0.7, while grasslands or bushes have NDVI values lower than 0.6.
Using this information, the recommended trimming areas are identified as regions covered by
line segments and pixels with NDV1 values equal to or greater than 0.7. To calculate the length
of the trimmed area (L) along the line (L;,:q;), the proportion of pixels to be trimmed (N¢y i)
to the total pixels on the line (N;,¢4;) 1S USed, as shown in equation (10).

Lirim = Ltotat X Nerim/Niotal (10)

This study considers two trimming patterns: narrow and wide trimming. Narrow trimming
targets only the 3m x 3m area on the power line, while wide trimming covers a 9m x 9m region
within the power line corridor. NDV|1 values in the trimmed pixels are reduced to 0.6. Trimming
lengths along 1/2/3 phases of overhead lines are recorded for both trimming methods, as shown
in Fig. 9. The recommended trimming areas along power lines are depicted in grey, with white
and blue line representing power lines with vegetation proxy index below and above 0.7,
respectively. Predictions for outage events and affected customers are made based on the new
NDVI values and compared with the counts before trimming. Results in TABLE IV show the
percentage reduction in outages and customer losses for each trimming approach.
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TABLE 11l Trimmed length (mile) of narrow trimming and wide trimming areas

Trimmed line type | Total Length Narrow Trimmed Length Wide trimmed Length
1phase_OH 619.0 349.0 373.2
2phase_OH 850.7 433.9 474.0
3phase_OH 985.5 378.9 423.9

TABLE IV Estimated reduction of outage events and number of affected customers

Variables Total 5-year count Narrow trimming Wide trimming
(before trimming) | Prediction | Reduction | Prediction | Reduction
Outage_Event_Num 9369 8,688 7.1% 7,058 24.8 %
Affected_Customer_Num 1,082,445 979,791 9.2% 746,156 31.2%

The results indicate that the trimmed length along the distribution power lines is
approximately half of the total length for 1/2/3 phase overhead lines. Narrow tree trimming
leads to a 7.1% reduction in outage events and a 9.2% decrease in affected customers. On the
other hand, wide tree trimming has a more significant impact, resulting in a 24.8% reduction in
outage events and a 31.2% decrease in affected customers, but comes at a higher tree trimming
cost. This prescriptive analysis is instrumental in decision-making processes for vegetation
management. It provides valuable insights into the potential benefits of tree trimming in the
recommended areas, allowing distribution system operators to assess the effectiveness of these
actions in reducing the risk of outages and minimizing customer impact.

6. CONCLUSION

This paper presents a prescriptive and proactive vegetation management framework using
lower-cost high-resolution satellite NDVI imagery for resilience planning of distribution
systems. The results of the case study in Puerto Rico show that the vegetation exposure level
of the power lines is effectively quantified using the proposed vegetation proxy index and can
be effectively used to construct prediction models, such as the Poisson log-linear regression
model, to predict the vegetation related outage risks and prescribe the most cost-effective
measures to improve reliability and resilience of the system. The initial results highlight the
promise of integrating vegetation factor into the outage risk prediction. In the future, our work
will focus on improving the model accuracy using deep learning techniques to fit in a broader
data-driven outage prediction framework to enhance electric grid resilience in Puerto Rico.
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