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SUMMARY 

 
Projected rapid electric vehicle (EV) adoption has created a challenge for utilities, including how to plan 

for an unpredictable future. As EVs gain market share and lawmakers encourage adoption through EV-

friendly policy, utilities must prepare for unknown increases in residential loads. Historically, single 

phase residential transformers have been sized based on an established design process using a diversity 

factor and typical residential load. As EV adoption increases, utilities may need to change their design 

parameters to accommodate increases in load. In this paper, a Synthetic Model for Advanced Realistic 

Testing – Distribution Systems (SMART-DS) model from the National Renewable Energy Laboratory 

(NREL) and CYME 9.0 was used to perform quasi-static time series analysis (QSTS) to understand the 

effects of EVs on residential transformer diversity factor and loading at different levels of EV adoption. 

Using the models, a method to forecast and create residential EV charging time series profiles was 

developed and used in the QSTS analysis. The changes in diversity factor, load factor, average 

residential load, and the upgrades needed based on the outlined criteria are reported. This paper provides 

considerations for the evaluation of current transformer sizing procedures with respect to the predicted 

growth of EV loading. 
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I. Introduction  

 

According to the U.S. Department of Energy, in 2022, 28% of the country’s energy was used 

for transportation, equal to approximately 10 billion kWh [1]. As the transportation industry expands its 

consumption of traditional petrochemical energy sources into power for electric vehicles (EVs), that 

energy will be generated, transmitted, and distributed through the bulk energy system to vehicle charging 

locations. This increased demand for power is expected to require large, costly, and time-consuming 

infrastructure upgrades within the electrical utility industry. Electric utilities are now facing very 

difficult tasks of accurately forecasting the effect of this increased demand on their existing 

infrastructure and prioritizing their upgrade efforts.  

Adding to the complexity of these tasks is record demand for transformers due to extreme 

weather events and supply chain bottlenecks resulting from the COVID-19 pandemic. This material 

scarcity makes precise sizing of future transformer deployment more critical. The impacts of EVs on 

the existing utility system must also be correctly understood if planned replacements are needed at 

different adoption levels. Lastly, rising interest rates in the US are creating pressure for utilities to spend 

wisely and without delay. All these issues make accurate prediction of future asset needs and timely 

procurement even more important. 

One of the most instrumental factors in power system planning is the diversity factor. Because 

the effect of EVs on the diversity factor of the distribution system is currently not well understood, 

electric utility planners do not have the information they need to accurately forecast and model future 

requirements of their systems.  

The primary input into system models is the diversity factor. It allows a system designer to take 

the overall system load addition in kilowatt hours and spread that demand over time, resulting in lower 

peak usage for the system overall. This can be extrapolated to individual components of the grid, such 

as substation transformers, service transformers, and feeder/service conductors.  

Because of increased demand for power, unreliable supply of assets and capital pressure, 

accurate information obtained from effective modelling of diversity factors and how they impact the 

distribution system is more important now than ever. To better estimate future impacts of EVs on 

residential transformers, SMART-DS models from the National Renewable Energy Laboratory (NREL) 

and CYME 9.0 software were used to study the impacts of EVs on residential transformers [2]. The 

studies were performed using QSTS at different adoption rates to determine the appropriate load and 

diversity factors for these important assets.  

 

a. What is Diversity Factor? 

 

Diversity factor is the ratio of the sum of the individual maximum demands of all connected 

loads of the system to the maximum demand of the whole system.  Diversity factor can be calculated 

using Equation 1.  

 

𝑓𝑑𝑖𝑣𝑒𝑟𝑖𝑠𝑡𝑦 =
∑ 𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝐿𝑜𝑎𝑑 𝑃𝑒𝑎𝑘𝑠

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑆𝑦𝑠𝑡𝑒𝑚 𝐷𝑒𝑚𝑎𝑛𝑑
 

(1) 

  

Diversity factor is the measure of how coincident load peaks are to one another, or how 

diversified loads are. When referring to an individual feeder, connected loads rarely have coincident 

peaks. Therefore, most feeders have a diversity factor greater than 1. A diversity factor equal to 1 would 

indicate that all connected loads have peaks occurring at the same time. Since this is not typical, a 

diversity factor greater than 1 is often used to size equipment such as transformers and conductors. Each 

connected customer is assumed to have an average peak load. That peak load is divided by a diversity 

factor. Then, the newly identified diversified load is used to size equipment instead of assuming that 

equipment would be sized to accommodate all loads peaking at the same time.  

For example, a new transformer might be expected to have three connected residential customers 

and the expected peak load for each residence is 7kW. If a diversity factor of 1.6 and an assumed power 

factor of 0.98 is used, following the calculations shown in Equation 2, a 15kVA transformer would be 

adequate for that situation. 
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𝑆𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑓𝑖𝑒𝑑 =  
(7𝑘𝑊/0.98) ∗ 3

1.6
= 13.4 𝑘𝑉𝐴 

(2) 

  

If a diversity factor of 1 had been used in that example, the total apparent power would have 

been 24.5 kVA, meaning a 25 kVA transformer would be needed. While that would be the most 

conservative choice, it is highly unlikely that all three residences would experience their peak at the 

same time. The transformer would have unused capacity which can lead to higher losses and increased 

purchase and installation costs.  

 

b. What is Load Factor?  

 

Load factor is the ratio of the average load in a given time period to the maximum load in that 

same time period, shown by Equation 3. Load factor is typically used to gauge equipment utilization. 

Load factor should always be less than or equal to 1.  

 

𝑓𝑙𝑜𝑎𝑑 =  
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐿𝑜𝑎𝑑 𝑖𝑛 𝐺𝑖𝑣𝑒𝑛 𝑇𝑖𝑚𝑒 𝑃𝑒𝑟𝑖𝑜𝑑

𝑀𝑎𝑥𝑖𝑢𝑚𝑢𝑚 𝐿𝑜𝑎𝑑 𝑖𝑛 𝐺𝑖𝑣𝑒𝑛 𝑇𝑖𝑚𝑒 𝑃𝑒𝑟𝑖𝑜𝑑
 

(3) 

  

A high load factor is typically viewed as good, meaning a high level of equipment utilization 

and low chance for idle capacity. Utilities often use load factor to indicate when and how to apply 

demand side management strategies such as time of use rates. By shifting high load residential 

activities such as charging an EV, drying clothes, or running an HVAC system to non-peak times, 

overall system peaks can be reduced.  

 

II. Challenges of EVs for Distribution Systems 

 
The distribution grid is a dynamic, ever-changing system that requires constant upgrades and 

re-designs. The challenge of upgrading the distribution grid is often compared to attempting to repair a 

plane as it flies. Distribution planners have the difficulty of planning for system upgrades multiple years 

in the future relying only upon forecasted and predicted conditions. EVs add even greater challenge 

when planning future upgrades because adoption levels and charging habits of customers are unknown.  
 

a. Market Projections 

 

“In the fourth quarter of 2021, hybrid, plug-in hybrid, and electric vehicles collectively 

accounted for 11% of light-duty vehicle sales in the United States”, according to data from Wards 

Intelligence [3]. The Biden-Harris administration has “set an ambitious target of 50% of electric vehicle 

(EV) sale shares in the U.S. by 2030” [4], with a large infrastructure law to help build charging 

infrastructure across the United States, including rural areas. Some sources project U.S. EV sales’ 

market share to be around 35% by 2030 [5], others say over 50% [6]. All 50 states have some form of 

tax credit or incentive for the purchase of an electric vehicle. Current projections of EV sales vary 

widely, but all of these statistics point to the rapid adoption of EVs throughout the world in the next 

decade. The directed efforts from lawmakers, manufacturers, and policymakers point to increased 

electrification of the transportation sector resulting from future penetration of EVs.  

 

b. Planning Challenges 

 

Many utilities estimate and evaluate load growth for upwards of 30 years, but most projects are 

planned around 10-year load growth projections. To prepare the system to handle the forecasted large 

additions of EV charging load, distribution upgrades must begin now.  

Despite many policymakers’ lofty goals of getting greater numbers of EVs on the road, many 

utilities are not ready. One of the biggest challenges of planning for EVs is that much of the EV load 

forecast is highly dependent on consumer behavior. People’s charging habits will shape EV load peaks, 

and unfortunately, current levels of EV adoption across the United States make it difficult to develop 

long term growth models based on realistic charging habits of EV drivers. During the past 10 years, 
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many studies have been published that address building realistic load profiles for EVs to use in load 

growth simulations, but many of these are based on small sample sizes within a handful of cities. While 

these studies lay a good foundation for EV modelling, they will not be realistic for all areas because EV 

charging habits vary by demographic.  

 Another planning challenge is projecting where charging will occur. While also a factor of 

people’s charging habits, charging location could greatly affect system peaks. Based on an EPRI report, 

80% of charging currently occurs at home [7]. With the current lack of public chargers, most consumers 

will continue to use chargers at home for the foreseeable future. Public chargers often collect data such 

as car type and charging duration, which a user consents to sharing when using a public charger. But a 

home charger that plugs into a standard 240v outlet does not always collect data like a public charging 

station. Most data from home charging is collected via smart meters provided by entities who have 

private agreements with their customers. The data is then used to develop models of charging habits in 

the specific area being studied. While these studies can be used by utilities, they may not provide a 

realistic picture for EV charging in a different area.  

 

 

III. Testing 

 

a. Method 

 

To test the effects of EV residential charging, models from SMART-DS datasets were used [2]. 

These models provided a test bed to implement residential EV loads in a realistic but synthetic model. 

CYME 9.0 Rev 7 with the time-series with profiles module was used to QSTS using the created time-

series data with three different levels of EV adoption, as shown in Table 1. The time-series load profiles 

used were created using the methods and assumptions outlined in later sections.  
Table 1. Percentage of EV adoption per customer for each simulation case.  

Case Percentage of Loads selected 
for First EV 

Percentage of Loads Selected 
for Second EV 

Low  5% 0% 

Medium  30% 0% 

High  60% 15% 

Medium TOU 30% with 50% adoption of a 
TOU rate plan 

 

 

i. Assumptions 

 

As discussed, there are current challenges to developing realistic residential charging load 

profiles. Due to these challenges, assumptions were made to develop the testing methodology. 

Residential loads were determined as an EV charging location based on the adoption levels shown in 

Chart 1, but 70% of the EV loads were assigned a battery electric vehicle (BEV) and 30% of customers 

were assigned a plugin hybrid electric vehicle (PHEV). BEV batteries were assigned a 68.4kWh 

capacity, while the PHEV batteries were assigned a 13.5kWh capacity. Each house is assumed to have 

a level 2 charger with a 7.2kW charging rate.  

Probability density functions from [7] for both the BEV and PHEV were used to determine the 

probability of a customer starting to charge their car based on their current battery level. Probabilities 

from [8] were used to determine the time of day a customer begins charging. These probabilities were 

different for weekdays and weekends. An average discharge rate of 9.4 kWh/day for BEV with a 

standard deviation of 10.25 kWh/day was assigned to BEVs, and an average discharge rate of 0 kWh/day 

with a standard deviation of 7.3 kWh/day was assigned to PHEVs. Logically, the discharge rate was 

limited to positive values. These values were based on the average kWh/mile rating of two common 

models of EVs, a Tesla Model X and a Chevy Volt. The daily miles driven and standard deviation are 

extrapolated from data presented in [7].  
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These probabilities, discharge rates, and driving habits were assumed to be a realistic 

representation of residential customer charging habits. Information around residential charging habits is 

limited, so assumptions were made using reliable sources and informed judgement based on those 

sources to ensure that realistic data is presented.  

  

ii. EV Time-series Loads 

              To create residential EV charging time-

series load models, Python 3 was used to make 

realistic residential EV charging time-series load 

profiles. Each individual customer was assigned a 

PHEV, BEV, or no EV based on the test adoption 

rate. Each customer was assigned a unique loading 

profile with a 15-minute resolution for the 365 days 

simulated. These individual loads were directly 

allocated in CYME to each customer who was 

assigned an EV. The method scripted in Python to 

create the time-series load profiles is outlined in 

Figure 1. 

Two different probability density 

functions (PDF) from [7] for BEV and PHEVs 

were used to determine if a customer charged 

their EV based on the SoC (State of Charge) of 

their battery, as shown in Figure 2. On a given day, if the customer did charge, based on the SoC PDF, 

a normalized time profile for weekdays and weekends was used to determine when the vehicle started 

charging. The normalized time profiles are shown in Figure 3. A time of use (TOU) rate plan was also 

evaluated by shifting the weekday probability of charging start time to peak at 23:00. The weekend 

charging profile remained the same for the TOU plan.  

 

 

Figure 2. Probability of charging based on present SoC. 
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Figure 1. EV time-series code flow chart. 
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iii. Modelling and Data Processing 

 

 The feeder topology shown in Figure 4 was analyzed to see the effects of EV loads on residential 

transformers. The different levels of adoption and EV load placements were defined by JSON placement 

files provided with the SMART-DS models with randomly chosen placements of EV loads. The EV 

adoption levels were defined based on 

the percentages shown in Table 1. The 

high case has the addition of a possible 

second EV adopted at residences where 

a first EV was already adopted. 

CYMEpy was used to efficiently place 

the EV loads on the models at the 

selected residential locations. 

Residential customer time-series load 

data was also provided with the models 

defined as a percentage of their total 

possible load for 15-minute intervals 

for 365 days.  

CYME 9.0 Rev 7 with the 

time-series with profiles module was 

used to run QSTS analysis with the 

generated time-series data with the 

three different levels of EV adoption. 

Load data was collected at 15-minute 

intervals for a total of 365 days for 

each transformer with connected 

residential load. This granular load data 

was then processed using a Python script 

to compare the customer time-series load 

files to the total load seen on the 

transformer high side. This script then 

provided the diversity factor on each 

transformer over the entire 365-day 

period.  

To relate the change in diversity 

factor to transformer loading, the load 

factor for each transformer was also 

calculated seasonally for summer and 

winter. Summer months were June, July, 

and August, and winter months were 

December, January, and February.  

 To fully understand the effects of the 

increase in EV loads on the overall loading 

of residential transformers, a function to determine the potential for transformer damaging events was 

developed based on percentage of loading over nameplate rating and the amount of time at that rating. 

Equation 4 was defined based on criteria set out by Eaton for single phase transformers, as required by 

ANSI [9].   

 

 Equation 4 was integrated over 12 hours, and if at any time a transformer’s loading integrated 

over time surpassed this function, it was considered a potential for damage. The integration was reset if 

the loading fell below 110%. While the criteria used to develop this function does not account for things 

such as ambient temperature, insulation life, or aging, it gives a simplified view of potential transformer 

damage based on increase in EV load. This function could be modified for specific situations if a 

manufacturer’s load curve is used to define when failure could occur, not just potential damage. 

𝑓(𝑡) = {
−100 × 𝑡 + 250,   𝑡 < 1.0

−8.333 × 𝑡 + 158.33,   𝑥 ≥ 1.0
 

(4) 

Figure 3. Probability of charge starting time for weekdays, weekends, and 

weekday TOU plan. 

Figure 4. Feeder topology used for simulation. 
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IV. Results 

 

Figure 5 shows the change in diversity factor for each adoption case when compared to the 

base case for all transformers with at least two or more customers. Transformers with only one 

customer were excluded from the diversity factor analysis. 

 Figure 5. Change in diversity factor for transformers with EV loads 

In all three adoption cases, the vast majority of transformers saw an increase in diversity factor. 

Of the transformers in the high level of adoption, 60% saw an increase in diversity factor, another 21% 

saw no change. Therefore, if current design practices of sizing transformers based on a set diversity 

factor has proven to be adequate and lead to no transformer overloading, in over 81% of cases, the 

diversity factor used should not need to be changed up to a high percentage of EV adoption. In 60% of 

cases, it could even be conservative, leading to underutilization of transformers. Table 2 shows the 

overall average diversity factor for all transformers studied with more than one customer. With the 

increase in EV adoption, there is a trend of increasing diversity factor. The medium adoption TOU plan 

had no effect on the diversity factor compared to the medium case.  
This predominant increase in diversity factor is most likely due to the high diversification of 

charging possible using the forecasting method implemented with this simulation. Since predicting 

charging times depends on many factors, using a diversified charging model presents a ‘one size fits all’ 

method that could be applied to any system and revised based on charging data collected in a specific 

area that accounts for demographics.  

To fully understand the effects of EV loads on transformer loading, Equation 4 was used 

to determine the number of potential transformer damaging events due to the increase in EV load. Table 

3 shows the increase in potential transformer damaging events per adoption case for all 688 transformers 

studied.  

 

 

 

Increase in Potential Transformer Damage 
Events per Adoption Case 

Low 19 

Medium 157 

High 415 

Medium TOU 136 

Table 2. Average diversity factor for the base case and each 

adoption level. 

Average Diversity Factor for Each Case 

Base 1.25 

Low 1.25 

Medium 1.28 

High 1.29 

Medium TOU 1.28 

Table 3. Increase in potential transformer damaging 

events per adoption case compared to the base case. 
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While the function used is not a guarantee of failure, it is an indicator that damage has more than likely 

occurred, increasing likelihood of later failure of the transformer.  

To mitigate these occurrences, 

transformer upgrades were tested to 

remove these instances of potential 

damage. Overloading was still allowed 

below Equation 4 since many utilities 

allow for equipment overloading in 

emergent situations, but all instances 

of potential damage were mitigated. 

Figure 6 shows the number of 

transformer upgrades needed in each 

adoption case specified by transformer 

rating in kVA, with the average 

customer count on all transformers 

being 1.82. Both the medium and TOU 

adoption cases were comparable in 

total number of upgrades, 50 and 45 

respectively. A total of 110 

transformer upgrades were needed to 

mitigate all potentially damaging events in the high adoption case. This is 16% of the total residential 

transformers studied.  

The average increase in residential customer peak load 

is shown in Table 4. The high adoption case saw a 2.74kW 

increase in peak load, a 19% increase in peak load compared 

to the base case. The medium adoption case saw a 7.6% 

increase from the base case. The addition of a level 2 charger 

in an average residential home could likely introduce a new 

peak load in many cases. While an increase in peak load is 

observed, it can be seen in Figure 7 that there was little change 

in load factor for all adoption cases. The summer load factor 

did see a greater decrease in load factor for all cases compared 

to the change in winter load factor. The decrease in load factor 

for both seasons is likely due to the increase in peak. 

load. When using an assumed 7.2kW level 2 charger for all EV loads, a change in load factor would not 

be expected since the average load and peak load would both likely increase. 

 

 

 

Table 2. Average increase in residential peak 

load for each adoption case compared to the 

base case. 

Average Increase in Residential 
Peak Load 

Low 0.174 kW 

Medium 1.10 kW 

High 2.74 kW 

Medium TOU 0.95 kW 

Figure 7. Change in load factor for transformers with EV load. 
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V. Considerations and Conclusion  

 

Utilities are presently focused on developing plans for large system upgrades for the projected 

increase in EV loads. However, practical steps can be taken now to plan for increased loads by changing 

current design practices with the future in mind. Evaluating the way transformers are presently being 

sized for new construction and routine maintenance could lead to cost savings down the road. A 

summary of findings can be seen in Table 5. In the medium EV adoption case, 7.3% of transformers 

needed upgrades to prevent potentially damaging events; 16% of transformers needed upgrades in the 

high adoption case.  

 
Table 3. Summary of findings.  

 

The United States has an estimated 50 million distribution transformers in operation [10]. If it 

is assumed that only 30 million of those are residential transformers, at an EV adoption level of only 

30%, 2.2 million transformers nation-wide could potentially need to be replaced. At 60% EV adoption, 

4.8 million transformers could need replacement. Due to the current supply chain issues causing massive 

delays in transformers delivery, many utilities are experiencing challenges in simply keeping up with 

supplying transformers for new construction. Many utilities have also been forced to delay large capital 

projects due to supply chain restrains, with lead times for single phase transformers being multiple years 

in some cases. If these conditions were to persist into the future, even made worse by increased demand 

due to EV adoption, it is more important than ever to consider ways existing design and planning 

methods can be changed to plan for EV adoption.  

Beyond just the increased demand driven by EV adoption, many cities are also pushing to 

decrease the use of natural gas for heat and cooking in residential homes. This electrification of heating 

and cooking will also lead to further increased demands. Changes in demand due to climate change 

could also affect peak demands in the future. Recovering from wildfires has already proven to be a 

challenge many utilities are facing, and many have already chosen to change their design and operation 

methods to account for the increased risk of wildfires being seen in recent years.  

EVs are an inevitable part of a future where society is not dependent on fossil fuels. With the 

push from lawmakers, manufactures, and utilities alike to make them more obtainable and appealing, 

EVs will eventually become the sensible choice for the average consumer. Current challenges around 

obtaining transformers makes it more important than ever for utilities to strategically plan for future 

increase in load when installing new transformers. Present design practices must be evaluated with the 

future in mind to ensure a grid that is prepared for a more sustainable and electrified future.  

 

  

 

 

 
Average 
Diversity 

Factor 

Average 
Change in 
Diversity 

Factor 

% of Total 
Transformer 
Replacement 

Average 
Increase in 
Residential 

Load 

Low  1.25 0.01 1.9% 0.174 kW 

Medium 1.28 0.04 7.3% 1.10 kW 

High 1.29 0.05 16% 2.74 kW 

TOU 1.28 0.04 6.5% 0.95 kW 
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