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SUMMARY 

 
Traditional grid analytics are model-based, relying strongly on accurate models of power systems, 

especially the dynamic models of generators, controllers, loads and other dynamic components. 

However, acquiring thorough power system models can be impractical in real operation due to 

inaccessible system parameters and privacy of consumers, which necessitate data-driven dynamic 

equivalencing of unknown subsystems. Learning reliable dynamic equivalent models for the external 

systems from SCADA and PMU data, however, is a long-standing intractable problem in power 

system analysis due to complicated nonlinearity and unforeseeable dynamic modes of power systems.  

 

    This paper advances a practical application of neural dynamic equivalence (NeuDyE) called Driving 

Port NeuDyE (DP-NeuDyE), which exploits physics-informed machine learning and neural-ordinary-

differential-equations (ODE-NET) to discover a dynamic equivalence of external power grids while 

preserving its dynamic behaviors after disturbances with only boundary measurements. The new 

contributions are threefold:   

• A NeuDyE formulation to enable a continuous-time, data-driven dynamic equivalence of 

power systems, saving the effort and expense of acquiring inaccessible system; 

• An introduction of a Physics-Informed NeuDyE learning (PI-NeuDyE) to actively control the 

closed-loop accuracy of NeuDyE; and 

• A DP-NeuDyE to reduce the number of inputs required for the training. 

 

    We conduct extensive case studies on the NPCC system to validate the generalizability and 

accuracy of both PI-NeuDyE and DP-NeuDyE. These exhaustive analyses span a multitude of 

scenarios, differing in the time required for fault clearance, the specific fault locations, and the 

limitations imposed by the accessibility of only a small subset of data. Test results have demonstrated 

the scalability and practicality of NeuDyE, showing its potential to be used in ISO and utility control 

centers for online transient stability analysis and for planning purposes.   
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1. INTRODUCTION 

Reliable discovery of dynamic equivalent models for unidentified subsystems, specifically external 

systems, is crucial to ensure reliable operations of large-scale interconnected transmission systems [1]. 

However, this task has been a longstanding challenge due to the existence of nonlinear dynamics, 

complex coherency characteristics, and unavailable component models in power systems [2][3]. 

Recent advancements in Phasor Measurement Units (PMUs) provide an opportunity to readily obtain 

rich history of high-data-rate measurements, which fostered the development of data-driven dynamic 

equivalence [4]. Despite various attempts being reported in the literature, significant challenges 

persist:  

 

• Learning continuous-time dynamic behaviors using discrete-time measurements poses a 

considerable obstacle. Traditional discretization techniques may not fully capture the intricacies of 

the continuous dynamics, leading to large inaccuracies that limit its practical implementations. 

• Achieving robust and stable closed-loop operations under diverse operating conditions and 

disturbances is essential for safe plug-and-play integration of dynamic equivalence. Whereas, none 

of the existing dynamic equivalencing methods have achieved successful closed-loop operations 

with bulk power grid models.  

• The final challenge lies in minimizing the required measurements to ensure a feasible and 

practical implementation. 

 

    This research makes three significant contributions to address the aforementioned challenges:  

• Formulation of Ordinary Differential Equations (ODEs)-Net-enabled Dynamic Equivalence 

(NeuDyE): This approach leverages ODEs and neural networks to model the system dynamics 

accurately, providing a continuous-time, data-driven representation that aligns with the actual 

behavior of power grids. 

• Introduction of Physics-Informed Neural Dynamic Equivalence (PI-NeuDyE): It combines an 

ODE-NET-enabled equivalent model with a physics-informed learning to identify a continuous-

time dynamic equivalence while ensuring a close match in the closed-loop dynamic behaviors 

under disturbances. 

• Implementation of a Driving Port NeuDyE (DP-NeuDyE): It reduces the number of inputs 

required for training, making it more manageable and cost-effective to deploy in real-world 

interconnected bulk power systems. Its generalization ability is also explored based on electrical 

distance.   

 

    This article is organized as follows: Section 2 introduces the mathematical basis of NeuDyE, i.e., 

how to formulate and simulate a power system with subsystems modeled by neural dynamic 

equivalence. Section 3 explains the key technology of PI-NeuDyE and DP-NeuDyE, i.e., using 

Neural-Ordinary-Differential-Equation-Network (ODE-NET) to discover the dynamic equivalence of 

power systems. Section 4 then introduces the procedure of the NeuDyE and presents extensive case 

studies on the 140-bus NPCC system [5]. The results demonstrate the effectiveness of NeuDyE and its 

capability to handle various contingencies. Section 5 states the conclusion. 

2. PROBLEM FORMULATION  

For a reliability coordinator (RC), the entire interconnection can be partitioned into an internal system 

(InSys) and the external systems (ExSys). A RC usually has both accurate dynamic models and real-

time observability for InSys, but not ExSys. In reality, there may be a cushion area where the RC has 

partial observability; however, in this paper, we consider it part of the ExSys as well. Take the 140-bus 

NPCC system as an example, InSys and ExSys, connected through two tie lines [6], are illustrated in 

Figure 1.  

 

    InSys (bus1-36), which is the simplified ISO New England (ISO-NE) system, represents the 

subsystem that can be characterized by precise knowledge of its structure and parameters, enabling 
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straightforward formulation using dynamic models for each component. The model-based InSys can 

be formulated based on the known dynamics of each component (e.g., the generators, turbines, 

exciters, loads, converter controls, transmission lines) by a set of differential algebraic equations 

(DAE) in (2.1) (2.2). 

 
Figure 1 Topology of the NPCC system  

    In contrast, ExSys (bus37-140) lacks accessible physics models due to factors such as unavailable 

system state measurements, privacy concerns and inaccessible local measurements, e.g., real-time 

dispatch of the generators. Therefore, a data-driven neural network based dynamic equivalence is 

relied upon to model ExSys, as in (2.3) [7]: 

                                                                    ( , , )in
in in tie

dx
x y i

dt
= P

                                                     (2.1)
 

 ( , , ) 0in in tieG x y i =   (2.2) 

 ( , )ex
ex in

dx
x z

dt
= N   (2.3) 

    Here, inx  denotes the state variables of InSys’s components (e.g., generators, turbines, exciters); 

iny  denotes the algebraic variables of InSys such as power flow states; tiei  denotes the currents 

flowing through the tie lines. Functions P  and G  denote the dynamic and algebraic equations of 

InSys, respectively, which can be readily established based on the physics models of InSys. exx  

denotes the state variables of ExSys; inz  denotes the features from InSys, which is selected from part 

of the states of InSys to describe the interaction between InSys’ dynamics and ExSys’ dynamics. N is 

the forward propagation function of a neural network, which mimics the ExSys dynamics. This neural 

network is multi-layer structured, whose forward propagation can be functionally expressed as: 

 1 1 1 1( , ) ( ( ( , , ) , ), )ex in m ex nm m mix z x z   − −=N L L L ,  (2.4) 

where mL  denotes the loss function of the 
thm  layer and m  denotes the corresponding weights in that 

layer. The universal approximation theorem ensures that a Deep Neural Network (DNN) can 

approximate any continuous functions for inputs within a specific range. Therefore, the advantage of a 

neural network-enabled dynamic equivalence lies in its flexibility for approximating a dynamic system 

without requiring the system to be linear or assuming any dynamical modes beforehand.  

3. ODE-NET-ENABLED DYNAMIC EQUIVALANCE 

3.1  NECESSITY OF CONTINUOUS-TIME LEARNING 
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A neural network can be regarded as a nonlinear function characterized by parameters  . In machine 

learning, these parameters are optimized by minimizing a loss function, typically computed as the 

error between measurements and neural network outputs. However, in this problem, the difficulty lies 

in the fact that the output of the neural network is the derivative of exx while the measurements only 

provide exx , making the loss function hard to construct directly. To solve the problem, two different 

paths exist: discrete-time learning and continuous-time learning. 

    Conventional machine learning techniques for dynamic equivalence primarily rely on discrete-time 

learning.  In discrete-time learning, the loss function for neural network training is usually constructed 

by discretizing the continuous-time differential equations into discrete-time difference equations. For 

example, based on the trapezoidal rule, the ExSys dynamics can be discretized as: 

                       
( ) ( ) 1

( ( ( ), ( )) ( ( ), ( )))
2

ex ex
ex in ex in

x t x t
x t z t x t z t

− −
= + − −


N N .               (3.1) 

Correspondingly, the loss function can be established, and the neural network can be optimized by 
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= −  , (3.2) 

where the subscript i  denotes the time-step, n  is the number of total time steps, 

1
ˆ ˆ ˆ( ( ) ( ))ex exy x t x t= − −


 denotes the derivatives estimated from the measurements; and 

1
( ( ( ), ( )) ( ( ), ( )))

2
ex in ex iny x t z t x t z t= + − −N N  denotes the derivatives estimated from the 

neural network; i  denotes the weighting factor at time step i .  

However, this approach is sensitive to derivative estimation, resulting in biased training outcomes 

due to residue errors during training or non-ideal measurements. Although discrete-time training may 

produce satisfactory derivatives fitting, it cannot guarantee the accuracy of system states after 

numerical integration, leading to unsatisfactory performance in learning continuous-time dynamics.  

 

    Our solution is an ODE-NET-enabled dynamic equivalence, which adopts a continuous-time 

learning philosophy by directly minimizing the error between the state measurements x̂  and the 

numerical solution of (2.4):  

 

,, , 2

0 0

,

1
min ( ) || ||

2

ˆ. .   ( , , )

n n

ex iex i i ex i

i i

ex i

ex in

x x x

dx

L

s t x
dt

z

 



= =

= −

=

 

N

  (3.3) 

Comparing (3.2) with (3.3), an obvious distinction is that ODE-NET is capable of directly 

minimizing the difference between real dynamic states and trained dynamic states, which requires no 

discretization and fully respects the continuous-time characteristics of power system dynamics. 

Therefore, it is theoretically less vulnerable to non-ideal measurements and the residue training error. 

3.2  PHYSICS-INFORMED CONTINOUS-BACKPROGATION 

Traditional DNNs are generally trained by the backpropagation technique, which computes the 

gradient of the loss function with respect to the DNN parameters at each layer to update the DNN. 

However, the ODE-NET training shown in (3.3) differentiates from the conventional loss function 

(such as (3.2)) because it involves the numerical integration in its constraints. To deal with the 

integration-incorporated constraints, ODE-NET adopts a continuous backpropagation technique to 

perform the neural network training. An adjoint method [7][8] is introduced to transform (3.3) into a 
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format that removes the numerical integration constraints; then a physic-informed (PI) continuous-

backpropagation technique is developed as follows: 
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where   and   respectively denote the adjoint states for ExSys and InSys, P  is equivalently 

formulated from P using (2.2). A dynamic equivalence is theoretically non-autonomous, where the 

InSys’ states also impact the ExSys’ dynamics. Thus, the dynamics of InSys and ExSys are both 

considered in (3.4), which assures the performance of ODE-NET in the closed-loop simulation of the 

whole power system. With proper adjoint boundary conditions [8], the physics-informed gradient is: 
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    Finally, the gradient descent for N  can be performed using 0|t = L integrated from (3.5) by 

any ODE solvers. 

3.3 NETWORK EQUIVALENT SEEN FROM DRIVING PORT 

In the previously devised PI-NeuDyE, the optimal closed-loop results are achieved using extensive 

inputs from the internal system, which may not be readily available in practical applications. To make 

the method applicable in such scenarios, we develop an enhanced neural equivalent technique called 

the Driving Port (DP) NeuDyE which only needs the knowledge of boundary voltages 
pv  for the tie-

lines, empowering the practical implementations of NeuDyE in utilities and ISOs. 

3.3.1 Algebraic component separation  

To form the neural network-integrated power grid, following equations (2.1)-(2.3), the selection of exx  

and inz  is necessary. If ExSys is static, a Norton equivalent current source, depicted in Figure 2(b), 

can replace it. From the perspective of InSys, the representation of ExSys in full detail or as a Norton 

equivalent current source yields the same output tiei  for the given input 
pv . 

 

(a) Original networks                        (b) Norton equivalent 

Figure 2 Network equivalent methodologies 
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    Inspired by the Norton equivalent theory, we develop a neural network observed from the driving 

port. To capture its nonlinear dynamics, measurements of port voltages 
pv  and tie currents tiei  are 

utilized to discover the state space model of ExSys as shown in Figure 2(b). The tie currents tiei  are 

selected as the state variables for external system exx , whose continuous differential structure is 

represented by the neural network; then a magic touch, the algebraic component separation, is 

introduced bellow: 

 
( , , )

( , ) 0

tie
tie p

tie p

di
i v

dt

i v

=

=

N

G

 (3.6) 

where the port voltages 
pv  corresponds to the InSys features inz  in (2.3).  The tie currents tiei  can 

then be represented as a linear combination of state variables and inputs, i.e.: 

  tie s ex pi C x D v=  +   (3.7) 

where matrices sC and D are constant matrices. If a fault happens in the internal network at time 

instant it , sudden changes may happen in ( ) ( ) ( )p i p i p iv t v t t v t = + − , while ( )ex ix t  keeps 

invariant in a very short period of t , i.e. ( ) 0ex ix t = .  

 

The components tiei  can be split into two types of components: continuous-state-variable components 

_tie cs s exi C x=   and algebraic components 
_tie a pi D v=  . Algebraic components embody the 

immediate contribution from the port voltages 
pv , which may exhibit discontinuity during switching 

events within the internal network. On the other hand, continuous-state-variable components, 
_tie csi , 

are employed as the constituents of the neural network equivalent, as illustrated in equation (3.6). 

These components fulfill the need for continuity as depicted in equation (3.6). 

 

    To compute the coefficient matrix D , we leverage measurement data obtained during the fault 

period. This is achieved by using the least squares method, as shown below: 
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 
 

   =          
 
 

 (3.8) 

where 
pn  is the number of port voltages and 

fn  is the number of faults whose port voltages and tie 

line currents are recorded in the data sets. Define ( ) ( ) ( )p i p i p iv t v t t v t = + −  and 

( ) ( ) ( )tie i tie i tie ii t i t t i t = +  − . The continuous component 
_tie csi  can then be extracted as: 

 
_  tie cs tie pi i D v= −   (3.9) 

    The neural equivalent network in (3.6) and the DAE now become: 

 

_

_

_
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 (3.10) 

    The neural equivalent of the external system and the corresponding formulated interface as shown 

in Figure 3 are integrated into Transient Stability Analysis (TSA) simulation. The equivalent 
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admittance is formed by the coefficient matrix D  (admittance matrix) in (3.9). The values of current 

sources are updated by applying an explicit integration method to (3.10). 

 
Figure 3 TSA interface for neural network equivalent 

3.3.2 Formulation of ODE-NET Based State-Space Model 

In real-world power networks, measurement data is inherently discrete, even though the underlying 

system is continuous. In the absence of assumptions regarding the dynamic model types, ODE-NET 

directly discovers the continuous-time dynamic model, as depicted in (3.10), from discrete 

measurements tiei  and 
pv . During the time interval from 0 ~ nt , ODE-NET is trained by minimizing 

the loss function defined by the error between the state measurements _
ˆ
tie csi  and the numerical 

solution 
_tie csi  by (3.10), as illustrated below: 

 
_ _ 2

0

1 ˆ|| ( ) ( ) ||
2

n

tie cs i tie cs i

i

L i t i t
=

= −  (3.11) 

where _
0

_( ) (0) ( , , )
it

tie cstie cs ii t i x u dt= +  N . 

    Similar as in (3.5), the challenge in minimizing (3.11) stems from the integration operation in the 

constraints. ODE-NET tackles this challenge by treating the ODE solver (the integration operation) as 

a black box and computing gradients using the adjoint sensitivity method [9][10], as depicted below 

with 
_tie csa L i=   : 

 
_

T

T

tie cs

T

a
iad

dt L
a





 
−    
 = 

    
 
 

N

N
 (3.12) 

3.3.3 Strengthening ODE-NET Based on Recurrent Neural Network 

Data-driven methodologies predominantly depend on observable states to construct the neural 

equivalent model, as exemplified in equation (3.6). However, this model reduction approach 

inherently leads to a scenario where state variables constitute only a minor subset of the 

comprehensive state variables present in the original power network. As a result, such a reduction may 

not entirely encapsulate all the crucial dynamic properties intrinsic to the power system. 

To address this deficiency of information, we enhance the DP-NeuDyE in this section by leveraging 

historical data through the implementation of Recurrent Neural Networks (RNNs). RNNs, with their 

unique ability to remember past information, provide a robust mechanism to incorporate temporal 

dynamic behavior into the model. This allows for a more comprehensive understanding of the system 

dynamics, thereby improving the model’s performance. The integration of RNNs into the DP-NeuDyE 

framework is illustrated in Figure 4 and explained as follows. 
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Figure 4 RNN empowered ODE-NET 

    The differential term 
_tie csdi dt  can be represented as: 

 
_ _ _ _ _

0

( ) ( ) ( ) ( )
lim

tie cs tie cs tie cs tie cs tie csdi i t i t i t i t t

dt t



→

− − − −
= 


 (3.13) 

where t  denotes a short period of time. Equation (3.13) implies that the historical information at 

time instant t t−  could help determine the derivative at time instant t . Therefore, we devise a 

strategy to strengthen ODE-NET based on recurrent neural network (RNN) [11]. As illustrated in 

Figure 4, the structure of the Recurrent Neural Network (RNN) cell integrates the output of a specific 

neuron from the previous time step into the computation of the current time step’s output for the same 

neuron. This mechanism effectively leverages historical data from the preceding time step to assist in 

calculating the derivative of the current time step. Therefore, this approach ameliorates potential 

information deficiencies that might arise when computations rely on a limited subset of state variable, 

thereby bolstering the overall accuracy and robustness of DP-NeuDyE. 

 

    Similar as in 3.3.2, the backward propagation should be used to evaluate the gradient of the neural 

network parameters. Recall that the continuous backpropagation for ODE-NET in 3.3.2 already 

considers integration along the time by solving an augmented differential equation. Therefore, the 

backward propagation throughout time for the RNN cell is ignored and the gradient descent method 

used in 3.3.2 can directly be applied to the RNN-empowered ODE-NET. 

4. CASE STUDY 

In this section, the detailed training and testing procedures of NeuDyE are introduced. Simulation 

results of PI-NeuDyE and DP-NeuDyE are presented to demonstrate their efficacy and practicality.  
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4.1 TRAINING DETAIL 

The ground truth electromechanical trajectories are obtained by simulating the complete, physics-

based 140-bus NPCC system via the Power System Toolbox (PST) [12]. The PST results are verified 

with simulations from Transient Security Assessment Tool (TSAT). Trapezoidal rule is adopted as the 

numerical integration method for the devised method. 

4.1.1 Open-loop, data-driven ODE-NET Training 

PI-ODE-NET: as introduced in Subsection 3.2.2, the selected states are from generators, exciters, 

governors, and line currents of InSys as ins , in total 90 dimensions; the tie line currents are the states 

of ExSys exx  with 4 dimensions (2 tie lines, each has a real part and an imaginary part). Note that such 

training features can be flexibly adjusted according to available measurements. If the training features 

are abundant, the training process might be slower because of the numerical integration burden. 

 
RNN-empowered DP-ODE-NET: followed by 3.3, ins  includes boundary voltages with 4 

dimensions (2 ports, each with a real part and an imaginary part); exx  consists of tie line currents; as 

such, DP-ODE-NET is faster than PI-ODE-NET. However, this comes at the expense of 

compromising the model’s generalization ability, resulting in less accurate predictions for unseen 

scenarios. 

4.1.2 Closed-Loop Testing  

After an ODE-NET is obtained, the closed-loop tests check its performance. Closed-loop means the 

ODE-NET-based ExSys model replaces the large-unknown external systems and integrates with the 

physics-based InSys model. This is the final setup. The entire system’s dynamics are then computed 

through numerical integration. The predicted values are trajectories simulated by the physics-neural-

integrated system, which contains the 36-bus, physics-based InSys and the ODE-NET-based dynamic 

equivalence of the ExSys. If the NeuDyE can accurately mimic the dynamics of the original ExSys, 

the predicted values should be close to the true values, i.e., simulation with the full system model. 

4.2 SIMULATION RESULTS 

4.2.1 Varied fault clearing times and fault locations using PI-NeuDyE 

As mentioned in 3.1, traditional discrete learning may yield satisfactory predictions in open-loop 

training by fitting the derivatives, like in Figure 5(a), which is the prediction from a deep neural 

network (DNN). Whereas in the closed-loop test in Figure 5(b), DNN fails to capture the continuous 

dynamics after the integration, showing the necessity of the continuous-time learning. 

 

 

(a) Open-loop training performance    (b) Closed-loop testing performance 

Figure 5 Comparison of NeuDyE with conventional discrete-time DNN 

Depicted in Figure 6 and Figure 7, 25 training scenarios are generated by launching three-phase 

faults at 0.50s at bus 18, 19, 20, 21, or 28 with fault clearing set randomly within a time interval 

[0.53s, 0.6s]. The training variables of InSys have 90 dimensions as mentioned in 4.1.1. Figure 6 

shows the schematic diagram of PI-NeuDyE and the test results on bus 21 with faults cleared at 0.54s, 

0.56s, and 0.58s, which are new values to the training sets. Trajectories of boundary voltage of bus 35 

demonstrate a perfect match between PI-NeuDyE’s results and that from the full NPCC model. 
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Figure 6 Closed-loop test results of fault on bus 21 with different clearing times 

    Figure 7 shows the test results at different buses with faults all cleared at 0.54s, showing that PI-

NeuDyE is also effective in handling changes in fault locations. Figures 6 and 7 together show that the 

derived PI-NeuDyE model can properly and accurately represent the dynamics and transients, 

regardless of changes in fault durations or fault locations. 

 

 

Figure 7 Closed-loop test results of fault with different locations 

Further, in Figure 8, 108 testing scenarios are generated with new fault locations and random fault 

clearing times at bus 2, 5, 9, 16, 25, 28, 32, 34 and 35. The box plot shows that the overall relative 

error is lower than 1%, indicating a satisfying generalization ability. 
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Figure 8 Accuracy of PI-NeuDyE under 108 cases with new fault locations and random clearing times 

As mentioned in 4.1.1, choosing features of InSys is flexible. Other settings, like using active and 

reactive power of transmission lines or bus voltages and line currents, are also feasible. As an 

example, Figure 9 presents a new testing result by using boundary voltages between ExSys and InSys 

and all branch currents in InSys as training features (90 dimensions for InSys). The predicted 

trajectories match with the measurements closely, with a mean error of less than 0.3%, indicating high 

accuracy and satisfactory performance of NeuDyE using different settings of training features.  

 

 

Figure 9 PI-NeuDyE closed-loop results using all branch currents and boundary voltages in InSys. 

4.2.2 Reduced variables using DP-ODE-NET  

As previously mentioned, DP-NeuDyE is designed for potential practical applications that requires 

limiting the number of input variables. In contrast with 4.2.1, where the number of InSys features used 

in Figure 9 and Figures 6-8 are 90 dimensions, DP-NeuDyE only needs 4 dimensions of InSys 

features. The selections of ExSys features are the same for both methods. The ExSys subsystem, as 

depicted in Figure 1, is modeled by the DP-ODE-NET as illustrated in Figure 10. 

 

 

Figure 10 DP-NeuDyE closed-loop simulation. 
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This model is derived from five distinct dynamic trajectories, each triggered by phase-to-ground faults 

at the T-line, as highlighted in red in Figure 10. Using the derived model, we generated the low-

frequency oscillation trajectories. Each oscillation is initiated by a phase-to-ground fault at the T-line 

within the green circle. The green arrows represent faults that have not been encountered in the 

training set (historical record). 

 

The trajectories generated by the full detailed model simulation are also drawn as dotted lines in 

Figure 10. It can be observed that DP-NeuDyE is able to precisely predict the low frequency 

oscillations in a fairly large area. Since this scenario is not in the training set, the predictability of the 

proposed method is validated. Besides, there are two oscillation modes in the full model-based 

trajectory: 0.5991 Hz with a magnitude of 0.2155 and 1.24813 Hz with a magnitude of 0.1349. The 

neural equivalent model-based simulation also accurately predicts those oscillation modes, with a 

magnitude of 0.2051 and 0.1431 respectively.   

4.2.3 Generalizability analysis based on electrical distance 

To quantify the NeuDyE models’ generalization performance, we employ the electrical distance 

between the fault locations in the testing set and those in the training set as a measure. The network 

topology is transformed into an adjacency matrix using graph theory, as depicted in equation (4.1), 

thereby establishing an automated method for predicting the performance of the introduced neural 

ODE model for subsystems. Consequently, the electrical distance between a new fault location and 

those in the training set can be determined from the adjacency matrix by selecting the shortest 

distance.  

 

Electric connection between BUS i and j:  

Ajacency matrix : Else: 0

Fault dynamic record near BUS i: 1

ij ij

ij

ii

A X

A A

A

=


=
 =

 (4.1) 

where i j  and ijX
is the reactance (p.u.) in the branch connecting BUS  i  and j . 

 

    In the previous case study as depicted in Figure 10, the electrical distances from the test set to the 

training set are as follows: 0, 0.0255, 0.0404, 0.0369. These electrical distances are relatively small; 

the generalizability of the DP-NeuDyE is thus relatively good. However, if a fault occurs at a 

considerably remote distance from those in the training set, such as the T-line between bus 19 to 17, 

where the electrical distance is 0.0948, the neural equivalent model may encounter challenges in 

making accurate dynamic predictions, as illustrated in Figure 11(a).  

 
(a) Erroneous prediction                               (b) RNN empowered model prediction 

Figure 11 RNN-empowered DP-ODE-NET simulation 

    That is exactly when RNN-empowered ODE-NET shows its advantage of a better generalization 

ability. For the same training set and testing scenario, the trajectory by the RNN-empowered neural 

equivalent model is shown in Figure 11(b). Instead of giving a diverged result, RNN-empowered 

ODE-NET provides a satisfying prediction, especially for the time period after the fault.  

 

    Despite the convergence achieved by RNN-empowered DP-NeuDyE from this distant fault location, 

its performance is still not as commendable as PI-NeuDyE shown in Figure 7, top right subfigure. The 

primary reason behind this discrepancy lies in the training process. PI-NeuDyE trains in a closed-loop 

manner by considering the interacting dynamics of both InSys and ExSys, involving 90 dimensions of 



  12 

 

 

InSys features. Whereas DP-NeuDyE only sees from the driving port, utilizing only 4 dimensions of 

boundary measurements as InSys features. As a result, there exists a trade-off between training 

efficiency and generalization ability, which impacts the overall performance of the DP-NeuDyE. For 

fault not too distant from the training sets, both DP-NeuDyE and PI-NeuDyE yield satisfactory results. 

5.  CONCLUSION 

This article introduces a physics-integrated Neural Dynamic Equivalence (PI-NeuDyE) and its 

practical application Driving Port NeuDyE (DP-NeuDyE), which uncovers a powerful continuous-

time dynamic equivalence of external systems. One of its key advantages is the ability to preserve the 

continuous-time dynamic characteristics of power grids while using fewer variables. The effectiveness 

of DP-NeuDyE and PI-NeuDyE are demonstrated through case studies conducted on the 140-bus 

NPCC system, showcasing their performance under various fault locations and clearing times. 

Furthermore, comparisons are made between DP-NeuDyE and PI-NeuDyE in terms of efficiency and 

generalization ability.   
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