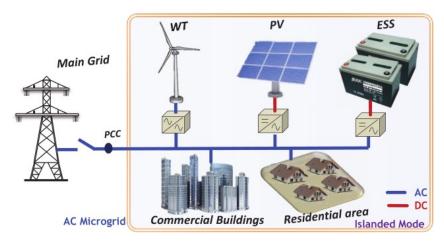


Transient Stability Analysis Framework for Performance Evaluation of Microgrids with an Energy Storage System and a Synchronous Condenser

Samaneh Morovati¹, Farid Katiraei², Shadi Chuangpishit²

(¹smorovat@utk.edu, ²fkatiraei@quanta-technology.com, ²schuangpishit@quanta-technology.com)

¹The University of Tennessee, Knoxville, TN, USA ²Quanta Technology, Toronto, Canada


Content

- Introduction
- Problem Statement
- Transient stability analysis framework for microgrid
- Microgrid operation with battery energy storage system (BESS) only
- Microgrid operation with BESS plus synchronous condenser machine (SCM)
- Comparative Analysis
- Conclusions

Introduction

- Many microgrid deployments are based on Inverter base Resources (IBR):
 - Energy storage only
 - Solar + energy storage
 - Solar / wind + fuel cell + energy storage
- IBR offers flexibility in controls, but makes Protection System design very challenging for islanded operation:
 - Large reduction in short circuit capacity from grid connected (several 1000s amps) to islanded mode (a few 100 amps)
- Reactive power management and voltage regulation could be challenging
 - Limited reactive power

Inverter-base Microgrid

Problem Statement

Due to the increasing penetration of inverter-based resources, the grid is experiencing challenges related to reduced fault current and system inertia; specifically, during isolated operation for Microgrids

Domination of Inverter base Resources

Challenges

- Low fault current level from power electronic inverters
- Lack of inertia
- Large frequency and voltage excursions
- limited reactive power

One Solution: Synchronous Condensers

- Improving short circuit capacity (Increasing short circuit ratio -SCR)
- Voltage regulation
- Improving system inertia

Transient Stability Analysis Framework for Microgrid

The framework offers a streamlined process for evaluating microgrid operation based on major transient events that would commonly occur during an islanded mode or transitioning to the islanded mode:

Transition

 Transition of a microgrid from a grid connected to an islanded mode under a large power mismatch (greater than 30%)

Black Start

 Black start and load restoration in steps greater than 1/3 of microgrid size

Step Load Increase

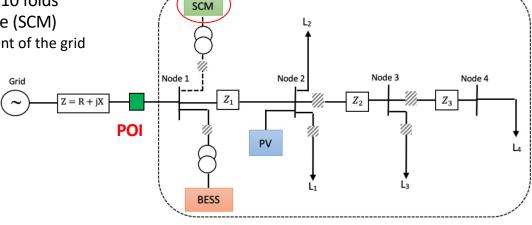
 Step load increase that changes the power balance more than 1/3 of the microgrid size

Load Rejection

 Load rejection (load drop about 1/3 of microgrid load)

Internal Faults

 Temporary faults internal to the microgrid (symmetrical or asymmetrical faults)



Benchmark Microgrid

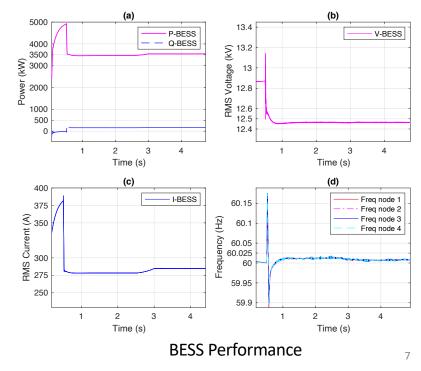
- 12.47 kV, 3.5 MW customer loads
- 5 MW / 10 MWh BESS (main source)
- Distributed PV systems (about 150kW)
 - 1. BESS only: reduction in fault current by 10 folds
 - 2. BESS + Synchronous Condenser Machine (SCM)
 - Designed to be closer to the fault current of the grid connected mode

Change in Fault Current - BESS Only

Fault current (kA)	Grid Connected Mode	Islanded Mode
Node 1	5.9 kA	0.65 kA
Node 4	1.5 kA	0.55 kA

Microgrid benchmark system

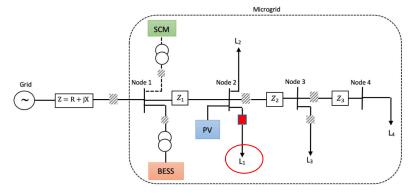
Microgrid

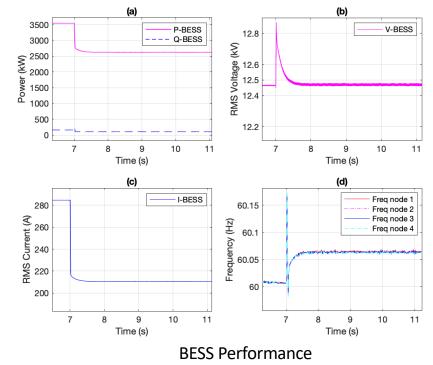


Microgrid Operation with BESS Only

Case 1A: Transition of a microgrid from a grid-connected to an islanded mode

- The **islanding** happens at t=0.5 s by opening the breaker before node 1.
- The battery's reference active and reactive power in the grid-connected mode is set as 5 MW and 0, respectively.
- Islanded mode is stable.

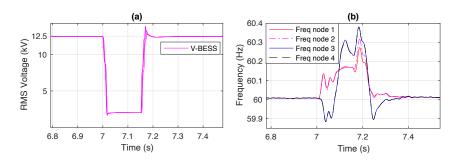


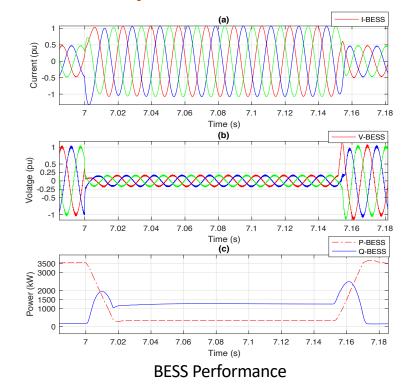


Microgrid Operation with BESS Only

Case 2A: Load rejection

- 1 MW load rejection happens at t=7 s in the islanded microgrid at node 2.
- Voltage and frequency are well regulated in a permissible range by BESS (no power quality issue).

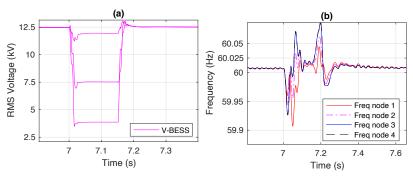


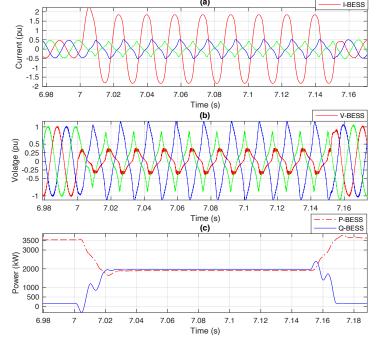

Microgrid Operation with BESS Only

Case 3A: Temporary symmetrical fault

- A three-phase to ground fault is applied at t=7 s at node 3 and cleared after 9 cycles.
- The observed short circuit current is about 650 A.

Voltage and Frequency Excursions

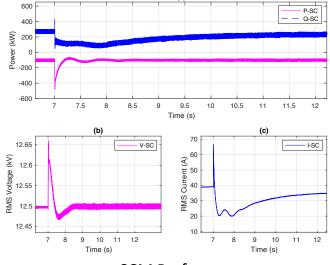

9

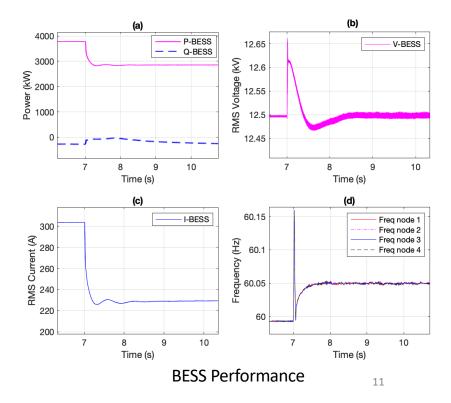

Microgrid Operation with BESS Only

Case 4A: Temporary asymmetrical fault

- An asymmetrical fault (single phase to ground fault) applied at t=7 s, for 9 cycles at node 3.
- The voltage, currents, and frequency are affected during the fault duration, and the recovery is made after clearing the fault at t=7.15 s.

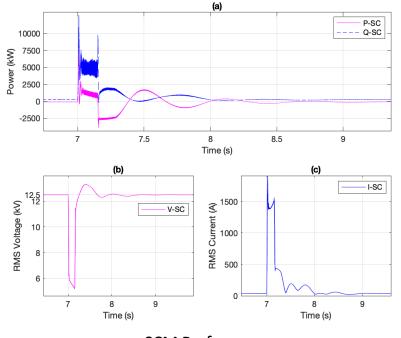
Voltage and Frequency Excursions

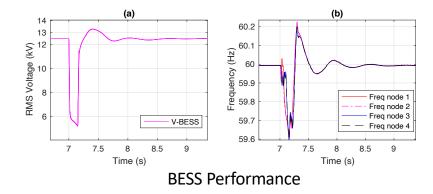

BESS Performance


Microgrid Operation with BESS plus SCM

Case 1B: Load rejection

- A 1 MW load rejection happens at t=7 s in the islanded microgrid at node 2.
- Islanded mode is stable (no power quality issue).

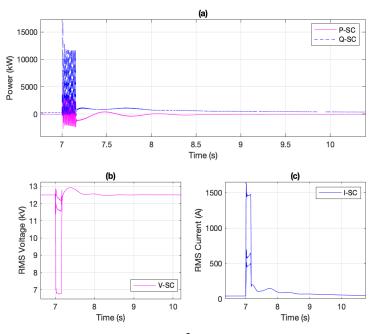

SCM Performance



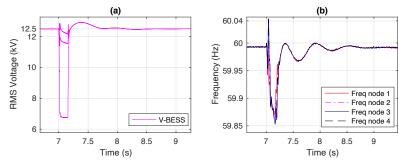
Microgrid Operation with BESS plus SCM

Case 2B: Temporary symmetrical fault

SCM Performance



- **Voltage recovery** is smoother in the presence of SCM with less drop during the fault.
- Additional fault current contribution from SCM increases the total microgrid fault current above 2000A, representing an SCR of 5.



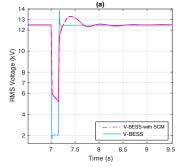
Microgrid Operation with BESS plus SCM

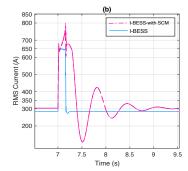
Case 3B: Temporary asymmetrical fault

SCM Performance

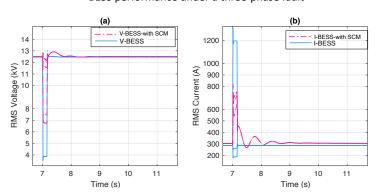
Voltage and Frequency Excursions

 In the presence of SCM, the voltage recovery and current oscillations are smoother with less deviations.


Comparative Analysis


Microgrid operation with BESS plus SCM:

- Smoother voltage recovery with less deviation in the voltage magnitude during the fault.
- Significant improvement in symmetrical fault current, which facilitate proper protection system design and device to device coordination.


Comparison

	BESS only	BESS + SCM
TPH Fault	650 A	1875 A
ΔV for SLD Fault	69.6%	45.6%

BESS performance under a three-phase fault

BESS performance under a single-phase fault

Conclusion

- ✓ The transient stability analysis framework for a microgrid is studied for microgrid transient performance evaluation in the presence and absence of **SCM** in an islanded microgrid.
- ✓ Comprehensive results for comparative analysis of a microgrid operation with/out SCM for <u>load</u> rejection, symmetrical and asymmetrical faults are proposed to evaluate the microgrid transient stability and performance.
- ✓ The obtained results show that SCM can **improve the microgrid stability**, **increase the three-phase fault current level**, and **smooth the voltage recovery** when compared with cases without SCM.
- ✓ The Optimal usage of SCM may need other additional control loops for reactive power and voltage control to provide the required reactive power to the microgrid.
- ✓ A supplementary frequency control loop is needed to provide <u>accurate synthetic inertia</u> in an islanded microgrid to provide guaranteed frequency regulation post disturbances such as load rejection.

Thank you

Questions?