CIGRE GOTF IEC 61850 Lab Tour

IEC 61850 Overview 10/20/2021

nationalgrid

Introductions

- National Grid IEC 61850 New England Team
 - Brian Degner, Engineer Brian.Degner@nationalgrid.com
 - Laura Dembitzki, Acting Manager Laura.Dembitzki@nationalgrid.com
 - Alfred Moniz, Principal Engineer <u>Alfred.Moniz@nationalgrid.com</u>
 - Paul Robinson, Principal Engineer Paul.Robinson@nationalgrid.com

01

IEC 61850 Standard

nationalgrid

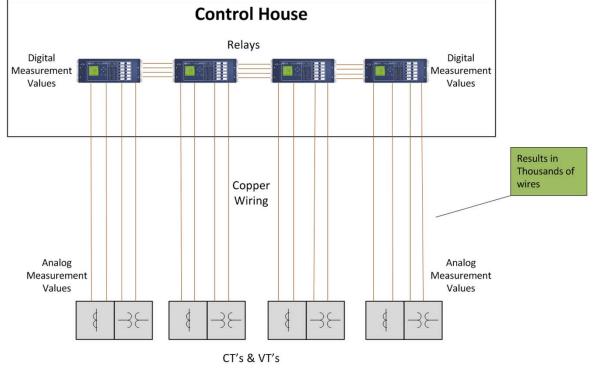
International Electrotechnical Commission (IEC)

- One of three leading international standards organizations made up of ~20,000 experts from industry, commerce, academia, research laboratories, and other related fields
 - Divided into national committees each nation is represented equally
- Founded in 1906 globally based in each continent
- Works closely with IEEE and other standards development organizations
- Prepares/publishes consensus-based standards
- Manages conformity assessments for electrical products, systems, and services

IEC 61850 Standard

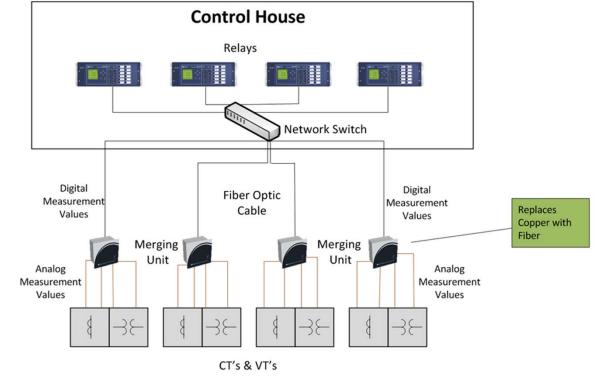
Objectives

- A single communication protocol designed to model the entire station
- A secure & reliable communication protocol that can be made future proof
- Promotion of high <u>inter-operability</u> between systems from different vendors
- Common method/format to store complete data
- <u>Defined testing</u> required to ensure equipment conforms to the standard

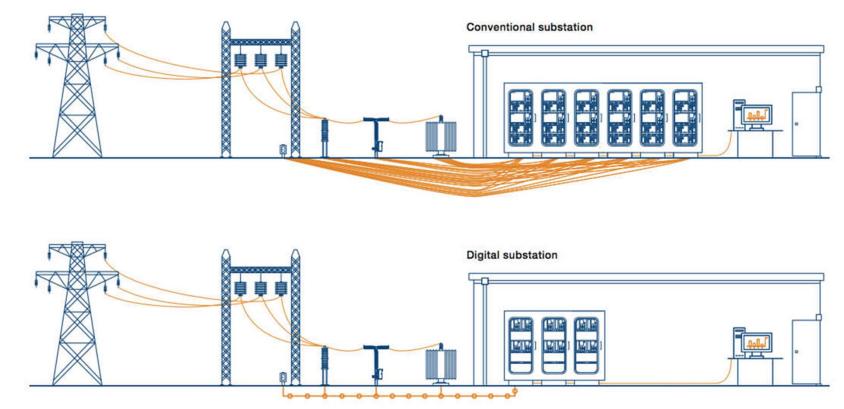

02

The Digital Substation

national**grid**



Conventional Substation


The Yard

Digital Substation

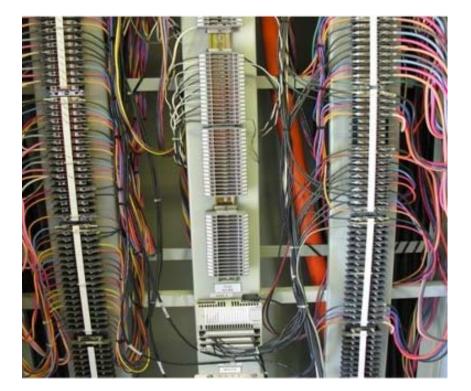
The Yard

Conventional Substation vs. Digital Substation

National Grid | CIGRE GOTF IEC 61850 Lab Tour | 10/20/2021

Source:

urce: 1 [https://www.windpowerengineering.com/going-digital-lookmodern-substation/]


Benefits of IEC 61850

	Description
Interoperability	Non-propriety common communication language
	Common platform for protection, control, asset management systems
Design Standardization	 Shorter construction window as system can be designed, modeled, and tested in advance
	Designs are easily reproducible
Flexibility	 Data is available over the network, modifications can be done via settings rather than physical changes
	System can be easily expanded
Digital Control System	Reduced panel space
	Reduced physical wiring
Increased System Visibility	Optimizing on-site maintenance
	Easier access to more asset data
Safety	Electrical hazards are remote from operator terminals
	Enhanced tagging control

Benefits of IEC 61850 - Wiring

Conventional

- Time-consuming, space-intensive, and expensive wiring & installation
- Limited performance and data transmission capabilities

Benefits of IEC 61850 - Wiring

Conventional

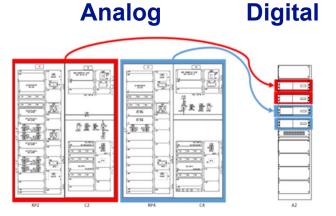
Benefits of IEC 61850 - Wiring

IEC 61850

- Simplified, cost-effective, and easy to install & maintain
- Enhanced performance and data transmission capabilities

Benefits of IEC 61850 – Digitization of Information

Digital Protection & Control System


- Control performed over the network through digital devices
 - No LORs, control handles, panel meters, test switches, mimic buses, etc.
- Panel reduction

Analog

National Grid | CIGRE GOTF IEC 61850 Lab Tour | 10/20/2021

Digital

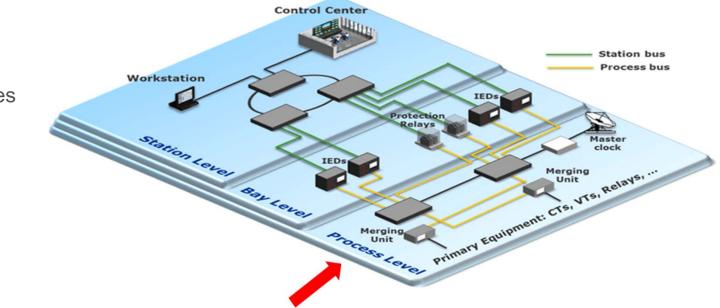
IEC 61850 Model Levels

Station Level Devices

• Station Controller, Human-Machine Interface (HMI), Engineering Computer, and other interfaces for remote communication

Bay Level Devices

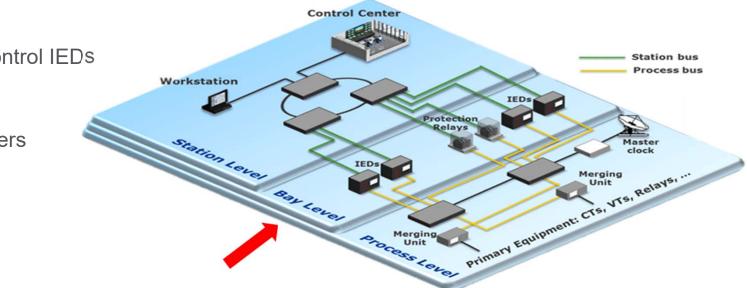
• Protection, Control, and Monitoring Units per Bay


Process Level Devices

 Devices interfacing with primary equipment, such as remote I/O and A/D merging units

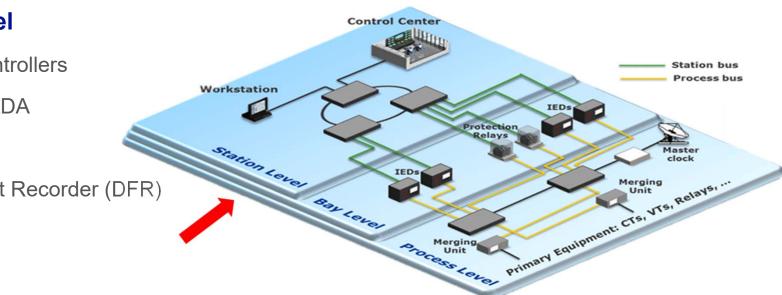
Substation Architecture

Process Level


- Circuit Breakers
- Disconnect Switches
- Transformers
- PTs / CTs
- Merging Units

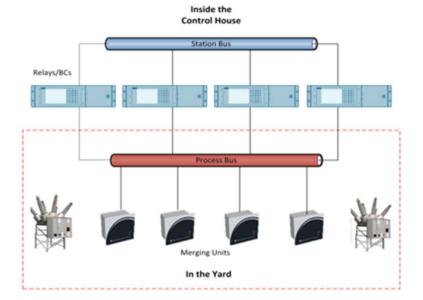
Substation Architecture

Bay Level


- Protection & Control IEDs
 - Relays
 - Bay Controllers

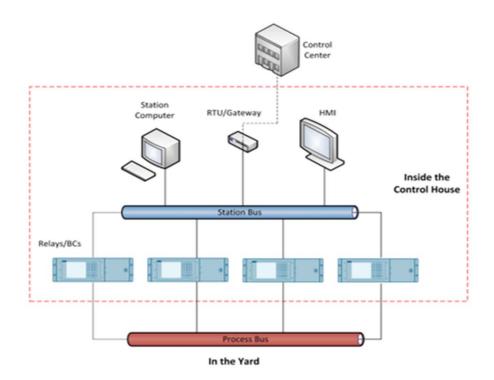
Substation Architecture

Station Level


- **Station Controllers** •
- EMS / SCADA •
- HMI •
- Digital Fault Recorder (DFR) •

Process Bus

Shared IT-based network which bridges process and bay levels


- Unprocessed signals sent from switchyard devices to IEDs
- Source data is processed and converted into digitalized measurements or decisions
- Data is broadcast to the network

Station Bus

Network which connects bay level and station level

• Transmits data from control enclosure to outside the substation

03

Intelligent Electronic Devices

nationalgrid

Intelligent Electronic Device (IED)

Microprocessor-based devices that host the substation protection, control, and automation functionalities

- Protective Relays
- Bay Controllers
- Merging Units
- Remote IO

Bay Controller

Bay Controllers host the breaker protection and control functionality

- Open / Close circuit breakers and associated motor operated switches
- Breaker Failure protection functionality
- Reclose and Synch Check functionality
- Serves as gateway between station bus and process bus for HMI and SCADA control

Protective Relay

Protective Relays host protection functionality for protected electrical elements

- Line Protection
- Bus Protection
- Transformer Protection

Station Controller

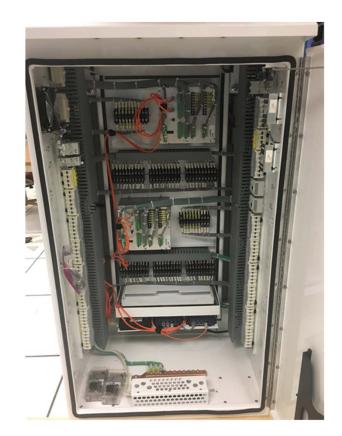
Ruggedized PC (Hardware) which runs specialized software for

- HMI Operation
- Interfacing with IEC 61850 protocols
- Communication to SCADA server

Human-Machine Interface (HMI)

Provides ability to monitor and control status and function within the substation

- Integral part of Station Controller
- Digitally replaces physical controls
- Communicates with network connected devices
- Used for placing devices in Test or Simulation modes


Merging Unit

Units installed at the breaker which convert the analog signals to digital sampled values

- "Back-half of the relay" communication bridge between processing and I/O
- Remote I/O devices interface discrete physical I/O points
 with network communications
- Merging Unit and Remote I/O functionality may reside in same box or separate boxes

Merging Unit Cabinet

Merging Unit Cabinet

Merging Unit Cabinet

04

Networking

nationalgrid

Network Importance

Physical contacts are replacement with digital data points:

- Trip & Close
- CT/VT information
- Lockout
- Breaker failure initiate
- Alarm points

The network must be resilient, reliable, fast, and secure.

Network Benefits

Reduced wiring and CT/VT loading

Increased availability of information by:

- Networked devices
- Point-to-multipoint communication
- Consolidated wiring
- Breaker failure initiate
- Alarm points

Faster "wiring" changes

Resiliency & Reliability

Separate Networks

- Process Bus: Protection related information and controls
- Station Bus: Lower priority device control and monitoring information
- Separation provides access restriction and traffic management

Redundancy

Redundant process networks

Traffic Management & Messaging

Network Segmentation

• Use of VLANs to isolate traffic

Traffic Management

• Use of priority for critical messages

Multicast Messaging

• Single message provided to group of devices

04

Time Synchronization

national**grid**

Time Synchronization in Digital Substations

Protection functions rely on time-sensitive digital communication

System accuracy depends on precise time synchronization between devices

Precision Time Protocol (PTP)

- Used to synchronize equipment clocks
- Combines data and timing networks
- Inherent flexibility via hierarchical approach of Best Master Clock Algorithm (BMCA)
- Sub-microsecond accuracy

nationalgrid