

2021 Grid of the Future Symposium

Improving Grid Infrastructure Sustainability by BIM and Optioneering Design Approach

October 18, 2019

Presented By:

Lyndsey Covert

Burns & McDonnell Lineup

Impact of Extreme Events on Electrical Substation
Infrastructure in Coastal Areas
Paper Session 4B // October 19th 9:45 am
Connor Bowen

Embracing Carbon Abatement in Concrete for the Construction of Electrical Utility Networks
Paper Session 4B // October 19th 10:15 am
Alex Pagnotta

Outline

- Background
- Sustainability Metrics
- Challenges to Sustainable Design
- Building Information Modeling (BIM) & Optioneering
- Substation Design Case Study
- Summary
- Q&A

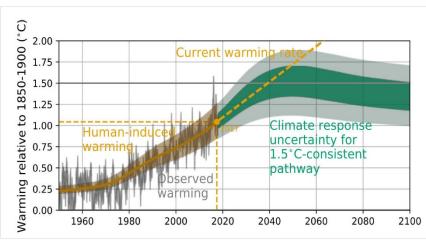
Background

Climate Change

Background

Sustainability Metrics

Challenges to Sustainable Design


Building Information Modeling (BIM) & Optioneering

Substation Design Case Study

Summary

O&A

- Human-induced rise in global average temperature
- Results in increased drought, famine, frequency and severity of weather events
- World leaders in 2015 Paris Climate Accord identified 1.5°C rise in global average temperature as limit to mitigate looming humanitarian crisis

* Source: https://www.ipcc.ch/sr15/

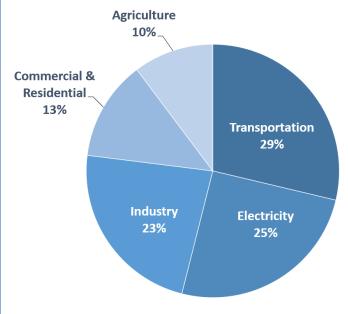
* Source: https://www.nytimes.com/interactive/2015/12/12/wo rld/paris- climate-change-deal-explainer.html

Background

Transmission & Distribution (T&D)

Sustainability Metrics

Challenges to Sustainable Design


Building Information Modeling (BIM) & Optioneering

Substation Design Case Study

Summary

Q&A

Total U.S. Greenhouse Gas Emissions by Economic Sector in 2019

* Source: https://www.epa.gov/ghgemissions/sources-greenhouse-gas

- Only 62% of electricity sector emissions are attributed to burning fossil fuels, what about the rest?
- Energy generation is often the focus, but
 T&D also contributes to emissions
- Increasing number of utilities are making emissions reductions commitments in line with Science Based Targets
- Transitioning to renewable energy sources contributes to new development

Sustainability Metrics

Measuring Emissions

Background

Sustainability Metrics

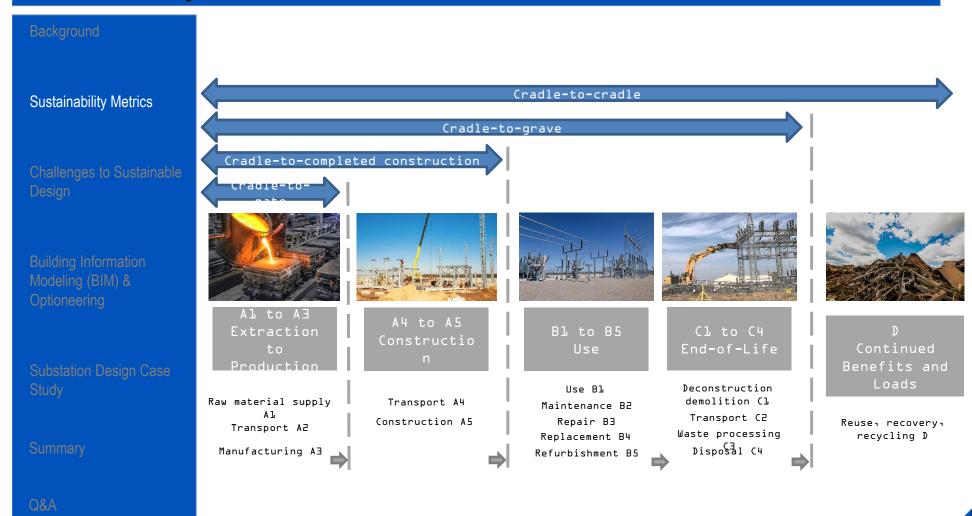
Challenges to Sustainable Design

Building Information Modeling (BIM) & Optioneering

Substation Design Case Study

Summar

 \bigcirc & \triangle


Common Chemical Name (Chemical Formula)	Global Warming Potential (GWP) (100 years)	Atmospheric Life (years)
Carbon dioxide (CO ₂)	1	5-200
Methane, fossil (CH ₄)	28	12.4
Methane, biogenic (CH ₄)	30	12.4
Dinitrogen monoxide (N ₂ O)	265	121
Sulfur hexafluoride (SF ₆)	23,500	3,200

Source: https://www.epa.gov/ghgemissions/ understanding-global-warmingpotentials

- To understand the T&D industry contribution to emissions, we must be able to measure them.
- Greenhouse gases are calculated based on their Global Warming Potential (GWP), or the amount a given gas warms the earth over a 100-year time compared to a unit of CO₂.

Sustainability Metrics

Boundary Conditions

Sustainability Metrics

Environmental Product Declaration (EPD)

Background

Sustainability Metrics

Challenges to Sustainable Design

Building Information Modeling (BIM) & Optioneering

Substation Design Case Study

Summary

Q&A

- Transparent and comparable lifecycle environmental impact reporting of products
- ISO 14025 compliant Type III environmental declaration
- Several free and publicly accessible databases (EC3, GloCoMDat, etc.)

THOMAS CONCRETE

ENVIRONMENTAL PRODUCT DECLARATION
Mix 407 • Buckhead Plant

9.5E-6

1.01

0.49

2.340

2,240

3.14

0.14

0.05

2.47

0.02

This Environmental Product Declaration (EPD) reports the impacts for 1 m³ of ready mixed concrete mix, meeting the following specifications:

- ASTM C94: Ready-Mixed Concrete
- UNSPSC Code 30111505: Ready Mix Concrete
- CSI Section 03 30 00: Cast-in-Place Concrete

COMPANY

Thomas Concrete 2500 Cumberland Pwky, Suite 200 Atlanta, GA 30339

PLANT

Part Plant 740 Lambert Drive Atlanta, GA 30324

EPD PROGRAM OPERATOR

ASTM International

100 Barr Harbor Drive West Conshohocken, PA 19428

10/03/2017 (valid for 5 years until 10/03/2022)

ı	Normazardous Waste Production (kg)	9.33
ı	Product Components: crushed aggregate (ASTM C	33), Portland
ı	cement (ASTM C150), natural aggregate (ASTM C33), fly a	sh (ASTM

ENVIRONMENTAL IMPACTS

Global Warming Potential (kg CO2-eq)

Acidification Potential (kg SO2-eg)

Eutrophication Potential (kg N-eq)

Nonrenewable (MJ) Renewable (MJ)

Batching Water (m3)

Washing Water (m3)

Hazardous Waste Production (kg)

Ozone Depletion Potential (kg CFC-11-eq)

Total Primary Energy Consumption (MJ)

Total Concrete Water Consumption (m3)

Photochemical Smog Creation Potential (kg O₃-eq)

Nonrenewable Material Resource Consumption (kg)

Renewable Material Resource Consumption (kg

Compressive strength: 4000 psi at 28 days **Declared Unit:** 1 m³ of concrete

Declared Product:

4000 CARBON CURE

Mix 407 • Buckhead Plant

The Carbon Leadership Forum PCR: Product Category Rules (PCR) for ISO 14025 Type III Environmental Product Declarations (EPDs) for Concrete, Version 1.1 dated 12/4/2013, serves as the PCR for this EPD. http://www.carbonleadershipforum.org

PCR review was conducted by: Nicholas Santero • thinkstep (formerly PE International)

Independent verification of the declaration, according to ISO 14025:2006: ☐ internal ☑ external

Third party verifier: Thomas P. Gloria (tgloria@industrial-ecology.com) • Industrial Ecology Consultants

LCA and EPD developer: Laurel McEwen (laurel.mcewen@climateearth.com) • Climate Earth

* Source: https://buildingtransparency. org/ec3/epds/ec38ppcy

Challenges to Sustainable Design

Accessing and Leveraging Data

Background

Sustainability Metrics

Challenges to Sustainable Design

Building Information Modeling (BIM) & Optioneering

Substation Design Case Study

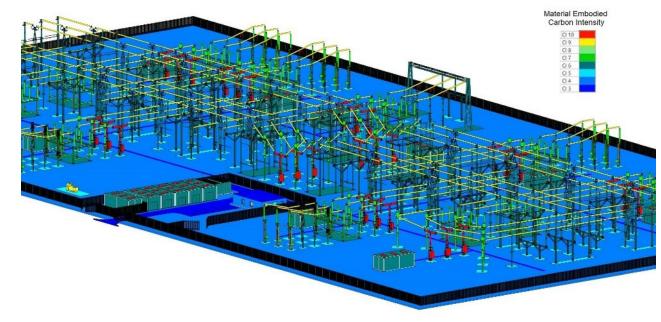
Summary

Goals	Challenges
 Track material and equipment embodied carbon (kgCO₂e) 	 Large amount of new data to be tracked
 Leverage embodied carbon data as decision driver 	 Assigning appropriate value to embodied carbon as decision drivers
 Weigh all possible options during early design stages 	 Investigating many alternative designs instead of a couple standard layouts

Building Information Modeling (BIM)

Multidisciplinary Data Management

Background


Sustainability Metrics

Challenges to Sustainable Design

Building Information Modeling (BIM) & Optioneering

Substation Design Case Study

Summary

- Building Information Modeling framework can handle a large amount of data for sustainability purposes
- Input: Embodied carbon data (in kgCO₂e) of all individual model elements, sourced from EPDs
- Outputs: design's total embodied carbon & individual elements carbon intensity

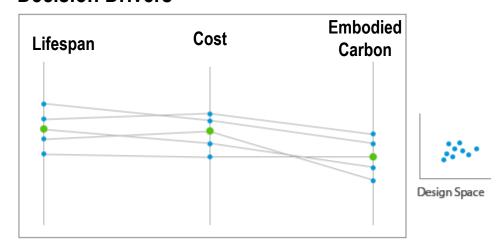
Optioneering with BIM

Background

Sustainability Metrics

Challenges to Sustainable Design

Building Information Modeling (BIM) & Optioneering


Substation Design Case Study

Summar

Q&A

- Weigh all relevant inputs (cost, weight, embodied carbon, lead time, etc.)
 and select the optimal design option
- User can document their decision-making and justify their design, as well as any deviations in relevant inputs.
 - Ex: A 10% increase in cost results in a 30% carbon reduction

 Decision Drivers

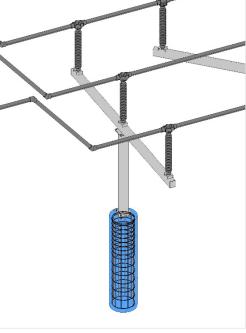
* Source: https://knowledge.autodesk. com/support/revit/learnexplore/caas/CloudHelp/clou dhelp/2021/ENU/Revit-Model

Substation Design Use Case

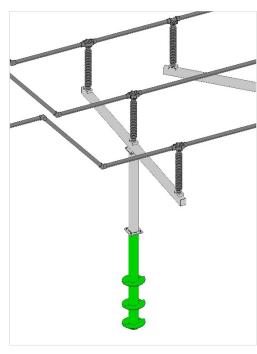
Background

Sustainability Metrics

Challenges to Sustainable Design


Building Information Modeling (BIM) & Optioneering

Substation Design Case Study


Summary

FDN: Option 1
Spread Footing FDN

FDN: Option 2
Drilled Shaft FDN

FDN: Option 3
Helical Pile FDN

Substation Design Use Case

OUNDATION DESTGN Design Spread Drilled al Ontions Footer Shaft Reu Concrete Reinforcin New Material g Material Different concrete Different Newly stremgth Altern har sizes refined (4000 psin (#4, #5, steel 5000 psi₁ **Substation Design Case** etc.) Recycled etc.) Study Newlv Lightweight content manufacture concrete steel d rebars Carbon Recycled sequesting content concrete rebars Fiber reinforced concrete

Summary

Background

Sustainability Metrics

Challenges to Sustainable Design

Building Information Modeling (BIM) & Optioneering

Substation Design Case Study

Summary

- 25% global GHG gas emissions from electric power industry
- Increased adoption of Science Based Targets
- Challenged with data management for more sustainable design
- Leveraging BIM technology to effectively manage data
- Document and justify design decision-making for optimized sustainable result

Thank you!

