

PV Generation Estimation for Curtailment Calculation

Melany Gutierrez-Hernandez Yi Liu Aleksandar Vukojevic

Overview

- Project Description
- Estimation Process and Dataset
- Feature Selection
- Forecasting Techniques
- Numerical Performance
- Analysis of Curtailment on May 1st, 2021
- Conclusions and Future Work

DER Generation Estimation

- ComEd deployed a DERMS in one of its feeders to manage the loading of substation transformer by reducing solar generation when needed
- A Metric and Valuation (M&V) process is being developed to evaluate the performance of DERMS in previous month
- Analysis conducted to calculate curtailed energy assumes fixed generation during curtailment events

PV generation estimation can play a core role in calculating the amount of curtailed energy by providing a better accuracy "backcast" comparing to the current strategy of assuming fixed generation.

Estimation Process & Datasets

Feature Selection

Features	Abbreviation
Real Power [kW]	Pow_real
Global Horizontal Irradiance $[W/m^2]$	GHI
Direct Normal Irradiance $[W/m^2]$	DNI
Diffuse Horizontal Irradiance $[W/m^2]$	DHI
Plane of Array Irradiance $[W/m^2]$	PAI
Ambient Temperature [° $\mathcal C$]	Temp
Wind Speed $[m/s]$	WSp
Relative Humidity [%]	Hum
Liquid Precipitations	Prec
Start Time	Day, Hour, Min

PAI is a linear combination of GHI, DNI, and DHI.

DER Forecasting Techniques

Neural Networks

Linear Regressor (LR)

Advantages: Simple and computational efficiency Drawbacks: Severely affected by outliers, low performance

Support Vector Regressor (SVR)

Advantages: Fast convergence speed and memory

efficient

Drawbacks: Sensitivity to noise

Long Short Term Memory Network (LSTM)

Advantages: Useful in time series predictor

Drawbacks: Slow computation

Random Forest Regressor (RFR)

Advantages: Fair degree of influence by outliers,

high accuracy

Drawbacks: Computationally intensive

Numerical Performance

Criteria used in evaluating performance of different forecasting models:

MAE: Mean Absolute Error

$$MAE(y, \hat{y}) = \frac{1}{N} \sum_{i=0}^{N-1} |y_i - \hat{y}_i|$$

MSE: Mean Squared Error

$$MSE(y, \hat{y}) = \frac{1}{N} \sum_{i=0}^{N-1} (y_i - \hat{y}_i)^2$$

MAPE: Mean Absolute Percentage Error $MAPE(y, \hat{y}) = \frac{1}{N} \sum_{i=0}^{N-1} \frac{|y_i - \hat{y}_i|}{\max(\varepsilon, y_i)}$

where ε is an arbitrary small yet strictly positive number to avoid undefined results when y is zero.

	LR	SVR	LSTM	RFR
MAE	0.408	0.167	0.158	0.036
MSE	0.226	0.050	0.043	0.004
MAPE	19.37	9.15	5.93	0.005
Time(s)	0.62	19.41	168.25	17.79

RFR is tested to be the best-performance model

Curtailment Analysis of May 1st

- On May 1st, 2021, between 8:30 AM and 12:00 PM, the first control event since the deployment of DERMS occurred.
- PV generation estimation is applied to estimate the amount of energy curtailed:
 - Calculation of curtailment in event n at interval t (difference of the estimated generation and the curtailed output):

$$Curt_{n,t} = Prediction_t - Actual_t$$

• Total curtailment (sum of curtailment for all the interval of event n and then all the events in the evaluation period):

$$E_{curt} = \sum_{n=0}^{N} \sum_{t=0}^{T} Curt_{n,t}t$$

Total Curtailm ant	Fixed Generation Assumption	2.41 MWh
Total Curtailment	RFR Generation Estimation	2.76 MWh
Total Generation		279.72 MWh

Conclusions and Future Work

Conclusions:

- Current Strategy: Fixed generation
- New Strategy: PV generation estimation → Higher Accuracy
- Select PAI, Ambient Temperature, Wind speed, and humidity as features used in "backcast"
- Results demonstrated that Random Forest Regressor presents the best performance
- Analysis of curtailment events on May 1st reveals that the curtailed energy is a small percentage of total generation

Future Work:

- Test the algorithm with the data of the whole year 2021 once the data is ready
- Implement the algorithm to the Metrics and Valuation Process to improve the accuracy

