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Outline



Definitions: 

Operational resilience enhancement strategy is to provide an immediate solution—a single 
action or a set of sequential actions—through utilization of available assets for improved 
performance during adverse events.

Motivations: 

Resilience enhancement strategies have been developed to reduce, mitigate, and prevent 
the catastrophic impacts of extreme events on power systems.

Resilience enhancement optimization is a mathematically involved problem accompanied 
with modeling challenges and computational burdens.  

The importance of machine learning methods to provide a fast and effective control 
algorithm to improve resilience of power distribution systems is still under investigation. 
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Introduction

Project Goal: Implement a reinforced learning-based algorithm to enhance operational resilience of 
distribution systems considering realistic extreme weather models and system dynamic constraints. 



Each extreme weather event has unique propagation properties and spatiotemporal 

characteristics.

Various components can be impacted at sequential time intervals.

Fragility models are usually used to identify potentially impacted components and their 

probability of failure.
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Spatiotemporal Characteristics of Extreme Weather Events
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A single or multi-agent framework is utilized to formulate a Markov game, where it is required to 

maximize the discounted returns.

Actor network: provides proper actions 

Critic network: learns the optimal policy for the actor network to take decisions 

5

Soft Actor-Critic (SAC) Learning Approach

A state (observation) represents 
a specific condition of the 

environment. 

An agent has its individual 
policy, which is a mapping 

process from the observation to 
an action. 

An agent takes an action, the 
environment changes as a result 
of the joint action according to 
the state of transition model.

An agent obtains rewards as a 
function of the state and joint 

actions and receives a private 
observation condition on the 

observation model. 



This paper utilizes SAC algorithm to control circuit switches of distribution feeder for 
operational resilience enhancement during hurricanes. 
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Implementation

Hurricane Impacts
• A hurricane propagates 

across power grid based on 
their spatiotemporal behavior. 

• Various components can be 
impacted at sequential time 
intervals.

• A state represents a unique 
system topology. 

• A power grid may reside in 
different states at each time 
instant.

Fragility Model
• Fragility model quantifies the 

failure probability of each 
component in terms of 
weather parameters from 
both temporal and spatial 
perspectives.

• The spatiotemporal 
characteristics of hurricanes 
are governed by key 
parameters that identify their 
uncertainties. 

• The hurricane model is 
governed by wind speed, 
wind direction, central 
pressure, and translational 
speed. 

SAC algorithm
• A single agent framework is 

utilized to train SAC 
networks for network 
reconfiguration in distribution 
system. 

• For a specific state, 
operational constraints might 
not be fully satisfied such as 
the absence of a slack bus for 
each microgrid or lost 
connectivity to load spots.

• Even fulfilling all system 
constraints might lead to 
existence of load 
curtailments due to 
insufficient generation supply. 
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Case Study

► System under study: 
 A modified IEEE 33-node distribution feeder.
 6 DERs with 1 MW maximum capacity each.

► Hurricane scenario: 
 Statistical parameters for hurricane model in 

Northeastern region of USA are obtained.
 Fragility model is used to list of potential failure 

components.

► Actor network: 
 Single hidden layer (32 neurons)
 ReLu activation function
 Output layer has 44 outputs (switches)

► Critic network: 
 Single hidden layer (32 neurons) 
 Softmax activation function
 Output layer has single output (Q-value)

Key parameter PDF type Parameters

Wind speed Lognormal 𝜇 = 2.66 𝑚/𝑠, 𝜎 = 0.5185

Wind direction Binormal
𝜇ଵ = −73.3, 𝜇ଶ = −7,2,

𝜎ଵ = 22.6, 𝜎ଶ = 70.35, 𝛼 = 0.5

Central pressure Uniform 𝐻଴ ∈ 1.5, 3  ℎ𝑃𝑎

Translational speed Uniform 𝑉 ∈ 0,15  𝑚/𝑠
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Results

► Case 1: 1000 episodes - 200 steps (decisions) per episode

► SAC learns to capture the features of the system states

► As SAC learns, it balances between exploratory and 

exploitation actions. 
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Results (Cont’d)

► Case 2: 2500 episodes - 200 steps per episode

► As the larger number of episodes are simulated, the SAC algorithm attains better learning behavior. 

► 200 steps limit per episode are not properly sufficient to further improvements. 

► SAC tuning parameters can be adjusted to achieve higher efficiency.



This paper has proposed an RL-based resilience enhancement approach to improve the resilience of 

electric distribution systems against hurricanes. 

The proposed method trains a SAC algorithm to determine the best set of actions to reconfigure the 

network feeder into a new set of networks that maintain operational constraints and achieve minimal 

load curtailments. 

A hurricane fragility model is used to simulate numerous scenarios based on predefined weather 

parameters.

The results showed the effectiveness of the SAC to learn from failure scenarios and to provide set of 

decisions for possible network configuration. 
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Conclusion


