Utilizing a BESS for Multi-Applications in a Distribution Grid

Christiana Malone
Distribution Grid Solutions

10/18/2021

Project Overview

- Objective: A one-day demonstration of the use of a BESS system for multiple grid support applications
 - > Outage mitigation, peak-shaving, and voltage support
- Methodology: Use modeling software to create static BESS model and perform different studies
 - Software installation
 - Obtain system characteristics, create BESS model, run power system analysis, obtain simulation results

Goal:

- Understand the three grid-support applications
- Familiarization with modeling and modeling software, model a DER component, and run analysis
- ➤ Summarize the project in a presentation (final report out) and a conference paper (CIGRE 2021).

Site Information via Modeling Software

Entire Circuit with Substation

CMM(TD-14 slides 3-7: i familiarize myself with synergi and the site location for this project, learning how to run different types of analysis and navigate synergi Christiana M Malone (DEV Trans Distribution - 1), 8/16/2021

Running Power Flow Analysis

Power flow results are obtained & voltage results are visualized.

24 (Single Day) Analysis

576 Analysis

Add BESS Model To Circuit

- The battery was modeled two different ways for active and reactive power applications respectively.
 - Active power application: generator was used to model battery (Figure 1).
 - Reactive power application: a STATCOM model was used with a pre-defined inverter model with constant Q for constant reactive power output, since the battery model does not support this implementation (Figure 2).

Figure 1: BESS Model

Figure 2: PV Inverter with volt/var function

CMM(TD-11 replace with BESS model information screenshot and STATCON screenshot, showing the two ways the battery was modeled for active and reactive power

Christiana M Malone (DEV Trans Distribution - 1), 8/16/2021

CMM(TD-12 this shows at constant -100 absorbing reactive power, with a constant power output. this is to minic the reactive power support from the BESS, since the battery model given does not support this implementation

Christiana M Malone (DEV Trans Distribution - 1), 8/16/2021

Active Power Application

- Active Power Application: Have the battery discharge during peak hours and charge during off-peak hours. This helps to shift peaking load on the substation transformer.
- Add a BESS and run power flow to validate that the model is working.

Discharging/Charging 1.5 MW for 2 hours during the peak & off-peak hours

Peak Hours: 1500-1700

Off-Peak Hours: 500-700

Peak Month: July

24-hour power flow analysis (Original case/BESS case)

Original Case:

BESS Case:

Using current 2021 peak day data from PI system

- Found peak day for Substation TX1 so far this year.
- Peak: 07/01/21 @ 1500-1600 -> AVG: 21.46673MVA
- Comparison of loading information with & without BESS.

2/23/2021 11:00 2/23/2021 12:00 NO DATA NO DATA 7/1/2021 15:00 7/1/2021 16:00 21.46673 21.73316 7/1/2021 14:00 7/1/2021 15:00 21.16065 21.43362 7/1/2021 16:00 7/1/2021 17:00 21.1263 21.73316 7/1/2021 13:00 7/1/2021 14:00 20.93171 21.14001 7/13/2021 16:00 7/13/2021 17:00 20.82652 21.11919 7/13/2021 14:00 7/13/2021 15:00 20.79368 21.0238 6/29/2021 17:00 6/29/2021 18:00 20.78414 21.0402 6/29/2021 16:00 6/29/2021 17:00 | 20.75449 | 21.0402 6/30/2021 17:00 6/30/2021 18:00 20.72398 20.95376 7/13/2021 15:00 7/13/2021 16:00 20.72364 20.92893 7/13/2021 13:00 7/13/2021 14:00 20.63911 20.82403

MVA vs. Hour Loading Information for Peak Day

Reactive Power Application

 Modeled reactive power source and recorded voltage and transformer tap position at the BESS site and the substation.

Tap Setting (PU)	Substation Voltage [V]	Site Voltage [V]	LTC mode	LTC position	BESS Reactive Power Output
1	122.9	122.3	Auto	-6	0
0.995	123.5	123	Manual	-6	0
0.995	122.9	122.2	Manual	-6	1000
0.995	122.9	122.2	Auto	-6	1000
0.995	122.7	122.2	Auto	-7	0
1	122.9	122.3	Auto	-6	0
1.005	122.2	121.7	Manual	-6	0
1.005	122.8	122.5	Manual	-6	-1000
1.005	123.6	123.3	Auto	-5	-1000
1.005	123.1	122.5	Auto	-5	0

- In Case 1 where the battery is absorbing: we see that the LTC doesn't change its position to regulate the voltage when the battery is operating.
- Without the battery, the LTC reacts by changing from -6 to -7. This shows that the battery regulates the voltage and reduces the LTC tap position change.

CMM(TD-13 use the Flex-STATCOM model for reactive power source Christiana M Malone (DEV Trans Distribution - 1), 8/16/2021

Islanding Mode Application: Outage Mitigation

- Serve as back up power generation. If the distribution system experiences an outage, the campus site can remain energized.
- Even though the recloser is open, so the building is disconnected from the main grid, the section still has power.

Islanding Mode Application: Outage Mitigation (cont.)

 Modeling a circuit outage by opening Breaker 22370 12. We see that the campus building is still energized.

Islanding Mode Application: Outage Mitigation (cont.)

	Voltage at Building	Voltage at Breaker
No fault	123 V	123.7 V
Fault	123 V	0 (not energized)

- Constant voltage at the site location regardless of faults elsewhere on the circuit.
- The BESS could provide backup power generation when there is an outage.

Results Summary / Conclusion

- **Objective:** A one-day demonstration of the use of a BESS system for multiple grid support applications.
 - > Outage mitigation, peak-shaving, and voltage support.
- Methodology: Use modeling software to create static BESS model and perform different studies.
 - Software installation.
 - ➤ Obtain system characteristics, create BESS model, run power system analysis, obtain simulation results. ✓

Outcome:

- The content presented throughout this project can assist distribution system planners in better understanding of BESS, different ways to model a BESS, various grid support applications, and the potential value stacking strategy.
- Future work includes value stacking strategy implementation and cost benefit calculation.

Questions?

