Electric Power Grid of the Future

CIGRE Next Generation Network March 4, 2020

Rob Gramlich

www.gridstrategiesllc.com

Grid History and Future with high penetration renewables

- 1. Traditional vertical industry structure
- 2. Need for regionalization
- 3. Need for a robust macro grid
- 4. Need for efficient transmission utilization
- 5. Need for large regional power markets
- 6. Reliability considerations
- 7. Hybrid resources

Traditional vertically integrated utility structure

Traditional vertical utilities

Regionalization with RTOs and ISOs

RTO Characteristics and Functions

(FERC Order 2000) (1999)

Characteristics:

- 1. Independence
- 2. Scope and regional configuration
- 3. Operational authority
- 4. Responsibility for shortterm reliability.

Functions:

- 1. Administer and design tariffs
- 2. Manage congestion
- 3. Solve the parallel path flow problem
- 4. Manage and provide ancillary services
- 5. Maintain OASIS and post the transmission capability
- 6. Perform market monitoring
- 7. Plan and manage transmission system expansion
- 8. Handle interregional coordination.

Wholesale Competition Structure

-Devin Harman https://www.rstreet.org/wp-content/uploads/2016/08/67.pdf

Transmission and Renewable Energy

• Best wind and solar far from load

NREL Wind (left) and Solar (right) Resource Maps

https://windexchange.energy.gov/maps-data/319, https://www.nrel.gov/gis/images/map_pv_us_annual10km_dec2008.jpg

Dr.

VCE

Transmission in other countries: China case

Europe Renewables and Transmission

https://globalchange.mit.edu/sites/default/fil es/MITJPSPGC_Reprint_16-9.pdf

US Transmission Congestion Costs Rising (Again)

Transmission Congestion Costs (\$ millions) for RTOs from 2016-2018

RTO	2016	2017	2018		
ERCOT	497	976	1,260		
ISO-NE	38.9	41.4	64.5		
MISO	1,400	1,500	1,400		
NYISO	529	481	596		
PJM	1,023.7	697.6	1,310		
SPP	273.7	405.3	380.9		
Total	3,762.3	4,101.3	5,011.3		

First, Use the Existing Grid More Efficiently

- Power Flow Control
 - Push and pull power, modular, scalable, movable
- Dynamic Line Ratings
 - Adjust path rating based on ambient conditions, allows capacity forecasting
- Topology Optimization
 - Software to optimize transmission assets, eg circuit breakers
- Storage as Transmission

Re-set incentives on transmission owners

Recent Large-Scale Expansions

- MISO MVP, SPP priority projects, ERCOT CREZ
- 3:1 Benefit-Cost ratios
- Winning formula:
 - Pro-active multi-benefit planning
 - Broad, beneficiary pays allocation

Transmission Enabled ½ of US Wind Capacity ~105 GW installed in US

Transmission plan	Wind Capacity Enabled (GW)
Tehachapi	4.5
Texas CREZ	14.5
MISO MVP	14
SPP Priority Projects, Balanced Portfolio	6
CO+ME+NV+PAC+BPA	10
Total	49

Transmission Barrier 1: Permitting

- State by state review
- States impacting other states, national interest not being considered

Transmission Barrier 2: Narrow planning

- Almost no inter-regional plans have been produced
- Planning by RTOs has been ground-up rather than comprehensive
- Planning has not been pro-active to consider known generation development in resource areas
- Planning benefits have been compartmentalized: economic/reliability/resilience/generator interconnection

Broad regional and inter-regional multi-purpose planning

Transmission Barrier 3: Funding

- FERC generator interconnection policy allowed "participant funding"
 - Even when many generators are connecting in the same area
- Not all benefits considered

Broad cost allocation

- Consider all benefits
- As they may change over time
- FERC assign costs to all beneficiaries

Investment Tax Credit

Market Design for an Evolving Resource Mix

• <u>F</u>lexible

- Fast (eg, 5 minute) dispatch, price based on value
- Close to real time commitments and dispatch
- <u>F</u>air
 - Technology neutral—pay for DELIVERED SERVICES, not ATTRIBUTES
 - Small building blocks
- <u>F</u>ar
 - Large geographic areas with seamless trading
- <u>F</u>ree
 - Bilateral contracts uninhibited
 - Full demand side participation, all flavors

See https://windsolaralliance.org/wp-content/uploads/2018/11/WSA_Market_Reform_report_online.pdf

Wholesale Price Effects of 40-50% Wind & Solar

(Wind: 30% wind & 10+% solar | Faxon ed: 20% wind & 20% solar | Solar: 30% solar & 10+% wind)

Impacts in 2030	Southwest Power Pool 2016: 18% wind & 0% solar			NYISO (New York) 2016: % wind & 1% solar			CAISO (California) 2016: 7% wind % 14% solar			ERCOT (Texas) 2016: 16% wind & 1% solar		
2016 wind & solar shares	Wind	Balanced	Solar	Wind	Balanced	Solar	Wind	Balanced	Solar	Mind	Balanced	Solar
Lower Average Prices [\$/MWh]	0 -6 -12 -19	% -21%	-27%	0 -6 -12 -37 -18	6 -38%	-39%	0 -6 -12 -255 -18	-23%	-27%	0 -6 -12 -250 -18	% ·17%	-15%
More Hours <\$5/MWh In baseline: 0% of all hours	6%	8%	13%	2%	7%	11%	6%	7%	11%	6%	11%	19%
Changes in Diurnal Price Profile red baseline shows 2016 wind & solar shares	10001 hue (1000)	144	lanead wild)))	J			V	~	_	A	Z
More Price Variability	1.8x	2.1x	2.5x	2.1x	2.3x	2.5x	3.0x	2.9x	3.4x	1x	4.7x	6.6x
Higher AS Prices Regulation Down	5x	6x	9x	2x	2x	Зх	Зх	Зх	Зх	2x	Зх	4x
Change in Timing of Top Net-Load Hours	Sh	ift from 4 to 7pm	pm		ft from 3 to 5-7pm		No	further sl 7pm	hift	Sh	ift from 3 to 6-8pm	

20

Source: LBNL

Best Market Structure for Low Cost De-Carbonization

- Environmental regulators internalize externalities
- <u>RTO/ISO</u> balances power system and administers short term spot markets
 - Procures energy and reliability services based on engineering definitions
 - Also plans transmission infrastructure for reliability and efficiency given future resource mix, recovers cost in regional tariff
- <u>Retail suppliers</u> competitively procure power (hedge) with PPAs to serve load
- <u>State PUCs</u> oversee hedging for some or all customers
 - ensure retail suppliers are credit-worthy buyers of wholesale power
 - Level playing field between retailers and provider of last resort
- <u>Utilities</u> build, own, and operate monopoly T&D (not G) with regulated rates
- <u>Independent Power Producers</u> build and own generation to sell electricity products to retail suppliers/wholesale buyers
- Financial participants provide risk management products

Reliability Efforts with Generation being considered by NERC and RTOs

- Common mode failures affecting multiple generators that are getting credit for having uncorrelated outages
- Peak energy supply in Northeast/Midwest winter Polar Vortices
 - If gas and transmission import constraints
- Ride-through capability and settings on inverter-based technologies
- Stability in weak areas of the grid
- Inertia/Fast Frequency Response adequacy with declining amounts of synchronous generation

Reliability Services of Generation Sources

	Inverter-Based				Demand Response			
	Wind	Solar PV	Storage/ Battery	Hydro	Natural Gas	Coal	Nuclear	Demand Response
Disturbance ride-through	•	0		•				
Reactive and Voltage Support	•						•	
Slow and arrest frequency decline (arresting period)				0			\bigcirc	
Stabilize frequency (rebound period)					•			
Restore frequency (recovery period)				•			\bigcirc	
Frequency Regulation (AGC)			•	•			\bigcirc	•
Dispatchability/Flexibility			•	•			\bigcirc	

Physical Balancing With High Renewables: Fuel Security in ISO-NE

Outage Cases/

Single-Variable Cases

G Combination Cases

Note: See Appendix A for more details.

New Development: Hybrid Resources

Enabling Versatility: Allowing Hybrid Resources to Deliver Their Full Value to Customers

- Interconnection
- Operational protocols
- Capacity value

Rob Gramlich and Michael Goggin, Grid Strategies LLC

Jason Burwen, Energy Storage Association

September 2019

www.gridstrategiesllc.com

Hybrid Resource Efficiencies

 Solar PV clipping with and without storage

Solar PV only

Hybrid Solar PV and Storage

CUSTOMER FOCUSED AND CLEAN

POWER MARKETS FOR THE FUTURE

Wind Solar Alliance

Grid Strategies

MICHAEL GOGGIN Grid Strategies LLC **ROB GRAMLICH** Grid Strategies LLC STEVEN SHPARBER Nelson Mullins Riley & Scarborough LLP ALISON SILVERSTEIN Independent consultant

ENERGY INNOVATION Grid Strategies 6

POWER PLAN www.energyinnovation.org 98 Battery Street, Suite 202 RAP power Senergymnosation.org

TABLE OF CONTENTS

PROCUREMENT

CONCLUSION

CENTRAL SPOT MARKET WITH

DECENTRALIZED FORWARD

EVALUATION CRITERIA

San Francisco, CA 94111

2

5

12

WHOLESALE ELECTRICITY MARKET DESIGN FOR RAPID DECARBONIZATION: A DECENTRALIZED MARKETS APPROACH

BY ROB GRAMLICH² AND MICHAEL HOGAN² JUNE 2019

"What wholesole market design would provide the best framework for integrating reliably and at least cost the new, clean resources that will be needed to de-carbonize the power system?"

This common guestion includes what model best provides clean sources with fair access, what model best drives timely retirement of the fossil

generation these clean resources are meant to replace, and what role the wholesale market should play in enabling new "smart" resources at the distribution/retail level. The question also includes both market structure (which entities perform which functions) and market design (what are the trading, bidding, and price-setting rules).[#] The pace and scale of new investment in clean resources will be determined in part exogenously, by environmental legislation or regulations. Such public policy instruments, including zero-carbon portfolia standards or carbon cap-and-trade, should be designed to address the market externalities of greenhouse gas emissions. in a way that complements rather than substitutes for the rale of the market in driving investment.

The question above is often motivated by three concerns regarding the standard spot electricity market design that shaped most current organized wholesale energy markets:

^a Grid Strategies LLC https://gridstrategies/kc.com/

² Regulatory Assistance Project https://www.raporline.org/

³ The question does not address the substantial transmission infrastructure needs for a de-carbonized grid; this is a more difficult challenge that also must be addressed and involves a significant role for traditional planning.

A Customer-focused Framework for **Electric System Resilience**

ALISON SILVERSTEIN | ALISON SILVERSTEIN CONSULTING **ROB GRAMLICH | GRID STRATEGIES LLC** MICHAEL GOGGIN | GRID STRATEGIES LLC

May 2018

Papers available at www.gridstrategiesllc.com

