

2019 Grid of the Future Symposium

Comparing Static and Dynamic Analysis of Short Circuit Forces on Substation Rigid Bus: A Case Study

November 5, 2019

Presented By:

Paul Somboonyanon, Ph.D., P.E., P.Eng



#### **Outline**

- Background
- Static vs. Dynamic Analysis
- Design Pros vs. Cons
- Case Study & Results
- Summary
- Q&A



# Background



## **Background**

- Short circuit force determination can be a complex analysis
- Increase in fault currents analyzed with new system upgrades/expansions
- Impact to project costs



#### **Static vs Dynamic Analysis**

Static analysis with IEEE 605-2008

"IEEE Guide for Bus Design in Air Insulated Substations"

$$F_{sc} = \frac{3.6 \, \Gamma \, I_{sc}^2}{10^7 \, D}$$
 [IEEE 605-2008 Eq. 15]

$$F_{sc\_corrected} = D_f^2 K_f F_{sc}$$
 [IEEE 605-2008 Eq. 16]



#### Static vs Dynamic Analysis

Dynamic analysis with CIGRE 105

"The Mechanical Effects of Short Circuit Currents in Open Air Substations"

$$i_{sc}(t) = \sqrt{2} i_{sc} [\cos(2\pi f t + \delta) - e^{-t/T_a} \cos(\delta)]$$
 [IEEE 605-2008 Eq. 17]

$$F(t) = \frac{\mu}{4\pi r^2} i_1(t) i_2(t) [d_1 \otimes (u_r \otimes d_2)]$$
 [IEEE 605-2008 Eq. 16]

$$F_{sc}(t) = \frac{\mu_0}{2\pi} i(t) \sum \frac{i_n(t)}{a_n}$$
 [CIGRE 105 Eq. 1.7]



Additional resources: CIGRE 214, and IEC 60865

## **Static vs Dynamic Analysis**

#### Short Circuit Force Function with Time



## **Design Pros vs Cons**

Static Analysis – IEEE 605-2008

| Pros:                                                               | Cons:                                                                         |
|---------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Minimal design time                                                 | More conservative analysis                                                    |
| Require fewer design parameters to run an analysis                  | Potentially require more support structures/foundations (higher project cost) |
| Reduce design complexity                                            | Applicable with limited bus layout/configuration                              |
| Widely used by utilities with well-<br>established design guideline |                                                                               |



## **Design Pros vs Cons**

• Dynamic Analysis – CIGRE 105

| Pros:                                                                           | Cons:                                                                        |
|---------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| More accurate analysis                                                          | Require extensive design time                                                |
| Potentially requires fewer support structures/foundations (project cost saving) | Increase design complexity                                                   |
| Applicable with any bus layout or configuration                                 | Require several more design parameters and considerations to run an analysis |
|                                                                                 | No industry established guideline available                                  |



Model analyzed for the case study





Short circuit force function utilized



- Evaluated parameters:
  - 1. Bus conductor member stress
  - 2. Insulator cantilever force
  - 3. Structure column stress ratio

Results – bus conductor member stress



Results – bus conductor member stress

#### **Bus Conductor Member Stress Comparison**



**Bus Conductor Member Label** 

Results – insulator cantilever force



Results – insulator cantilever force

#### **Insulator Cantilever Force Comparison**



**Insulator Member Label** 

Results – structure column stress ratio



Results – structure column stress ratio

#### Structure Column Stress Usage Comparison



**Structure Column Member Label** 

### Summary

- Static analysis can be easily implemented but can be too conservative
- Dynamic analysis could be more complex but provides more accurate results
- Rigid bus design with dynamic analysis generally yielded lower stress on components compared to static analysis
- More flexible members are subject to higher load reduction with dynamic analysis





