# Blackstart Studies: Cranking Path Validation & PV Impact

Melanie Bennett ET Ops Engineering-Special Studies



# **Blackstart Background**

- Blackstart: Re-energizing the grid without external power
- Localized blackstart occurred in the 2003 Northeast Blackout
  - Full scale blackstart has never happened in the mainland US



Times Square, August 14, 2003 [Source: The Atlantic]

- What happens if 100% of the grid is down?
- System Restoration Plan
  - Guideline to restore power
  - Updated annually or when system changes



Puerto Rico Satellite Imagery [Source: NOAA]



### **Previous Work in 2018**

Generation Retirement





PV Impact on Blackstart





Study Limitations: hypothetical PV location & size | only reactive power control



# **Project Overview**

# SRP Path Analysis

- SOC requested dynamic study of four paths
- Study voltage, frequency, generator VAR



# PV Impact Study on Blackstart

- Improve PV assumptions
- Implement active power control





#### **Events:**

- 1. Energize 30.6 miles long 230 kV line
- 2. Pickup 30 MW load
- 3. Energize 1 mile long 230 kV line







#### **Events:**

- 1. Energize 17.3 miles long 230 kV line
- 2. Pickup 90 MW load
- 3. Energize 14.5 miles long **500 kV** line







#### **Events:**

- Energize transformer
- 2. Pickup 20 MW load
- 3. Energize 42.8 miles long 230 kV line



PSSE governor model is not adequate for dynamic blackstart studies.



#### Events:

- 1. Energize 0.4 miles long 230 kV line
- 2. Pickup 20 MW load
- 3. Energize 44.1 miles long 230 kV line





Path results will be used in blackstart training for operators.



# **SRP Path Study Concluding Remarks**

- Concerns of overvoltage: long 230 kV lines and 500 kV lines
- Balancing load must be picked in increments
- Some governor models need to be updated for blackstart studies
- Need additional studies from RTDS simulation



# **Project Overview**

# SRP Path Analysis

- SOC requested dynamic study of four paths
- Study voltage, frequency, generator VAR



# PV Impact Study on Blackstart

- Improve PV assumptions
- Implement active power control





# Why Should We Study PV Impact?



#### **Future PV Generation**

#### Renewable Portfolio Standard:

Virginia: 15% by 2025North Carolina: 12.5% by 2021

#### Integrated Resource Plan

Install additional 4.7 GW of solar by 2033

Higher renewable penetration requires impact studies to normal and critical processes.



### PV Site Located on Blackstart Path 4





# **Consider PV Historical Data**







PV farm without control adds frequency variations to blackstart restoration.













Increased PV penetration can trigger under-frequency thresholds.



# Possible Ways PV Can Help

#### Reactive power control:

Assist with voltage regulation



#### Active power control:

Assist with frequency regulation





### **PV** Reactive Power Control

Energize 500 kV





Pickup 10 MW







### **PV Active Power Control: PV Curtailment**



#### **Assumptions:**

- Pickup 10 MW load
- PV has ramping capability
- PV with dynamic headroom

#### Result:

- Minimum frequency improved by 29.4%
  Possible challenge:
- May not eliminate all fluctuations
- Not very popular



# PV Active Power Control: Battery + No Control PV



### Assumptions:

- Pickup 10 MW load
- Battery provides ~8MW support at peak
- PV operates with MPPT

#### Result:

- Minimum frequency improved by 23.5%
  Possible challenge:
- High cost



# **PV** Active Power Control: Hybrid Approach



### Assumptions:

- Pickup 10 MW load
- Smaller dynamic headroom
- Less support from battery

#### Result:

- Minimum frequency improved by 29.4%
- Two methods to improve frequency



# PV Blackstart Study Concluding Remarks

- Reactive power control helps with voltage
  - Mitigate overvoltage from line energization
  - Mitigates undervoltage from load pickup
- Active power control helps with frequency
  - Curtailment can mitigate upward frequency fluctuations
  - Battery can mitigate upward & downward fluctuations
  - Hybrid battery-curtailed provides two regulation methods



### **Contributions**

- Studied the dynamic response of blackstart cranking paths
  - For future training of system operators
  - Identified necessary modeling improvements for blackstart
- Continued studying the impact of PV on blackstart restoration
  - Achieved a more realistic scenario
  - Developed active power control algorithm for frequency regulation



#### **Future Works**

- PV adaptable control scheme
- Study the impact of PV on protection system settings
- Study more paths with nearby PV
- PV optimal size sensitivity on blackstart
- Microgrid blackstart with PV & BESS



# **Acknowledgements**

Mentors: Dr. Ren Liu

Dr. Yajun Wang

Dr. Rui Sun

Manager: Kyle Thomas

ET Operations Engineering-Special Studies



# Thank you!

