

CIGRE GOTF 2019 - Phase Angles as a Proxy for Voltage Stability

Michael R. Richardson AMERICAN ELECTRIC POWER

- AEP Overview
- Highpoints of AEP 2016 CIGRE GOTF paper on TVSI voltage stability.
- Phase Angles as a Proxy for Voltage Stability
- Conclusions
- Appendix Voltage Stability Triangle Program

2018 COMPANY OVERVIEW

Ô	Number of Employees	17,582	T	Transmission	40,000 miles
ក្រា	Regulated & Competitive Custom	ers 5.8 million	*	Distribution	220,000 miles
۲	Service Territory 200,00)O square miles		Total Generating Capacity (owned & PPA)	32,000 мw
\$	Total Revenues	\$16.2 billion		Total Renewable Portfolio*	5,272 мw
	Capital Investments	\$6 billion		Total Assets	\$68.8 billion
\$\$\$	Cash Dividends Per Share	\$2.53	\$	Charitable Giving	\$25.5 million

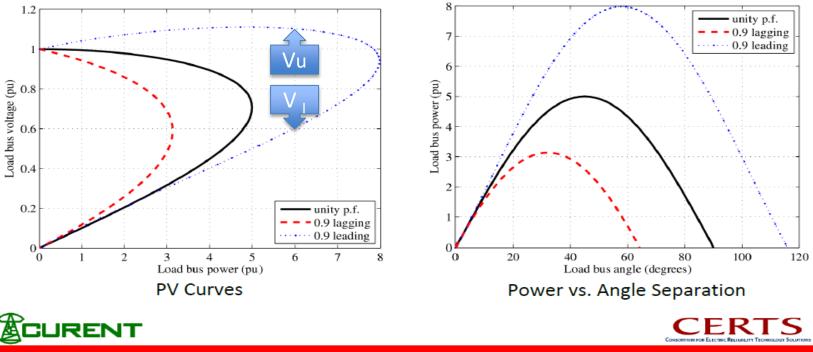
* Includes expected capacity as of year-end 2019.

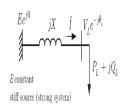
https://www.aepsustainability.com/sustainability/reports/

Highpoints of AEP 2016 CIGRE GOTF paper on TVSI Voltage Stability

Highpoints of AEP 2016 CIGRE GOTF paper

- IEEE/CIGRE Joint Task Force Classification of Power System Stability
 - Long Term Voltage Stability using static analysis
- Triangle Voltage Stability Index TVSI
 - Uses ratio of V_I and V_u
 - TVSI = V_1 / V_u
- Next two slides demonstate V_1 , V_u , and TVSI

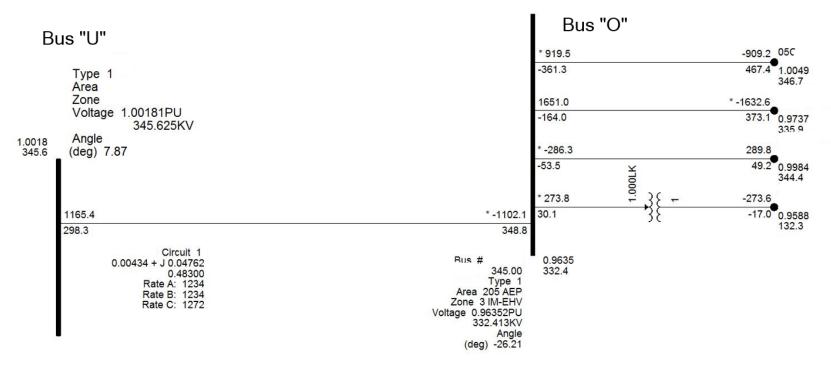

Highpoints of AEP 2016 CIGRE GOTF paper


PV Curves and Angle Separation

Single-load VSA with constant power factor:

Rensselaer Polytechnic Institute

Load bus angle (angle separation) is seldom analyzed in VSA



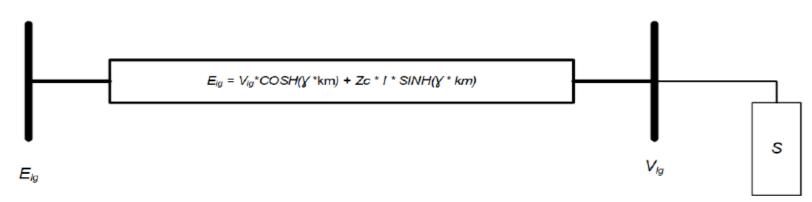
U

TVSI, Voltage Drop, & Phase Angle Across a Branch

What's the voltage drop across the O -U 345kV path?

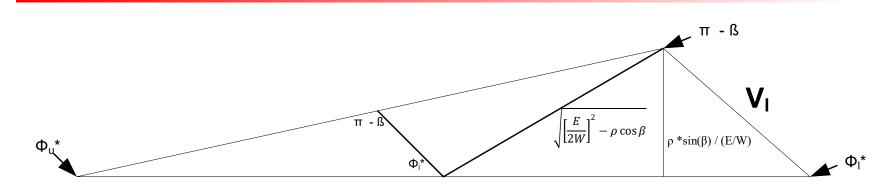
345.6 - 332.4 = 13.2kV?
 <u>345.6@7.87</u> - 332.4@-26.21?
 Ans: It's #2; 199kV
 TVSI = V₁ / Vu = 199/332.4 = 0.5987; Delta Phase Angle = 34.08 degrees

Phase Angles as a Proxy for Voltage Stability



- NERC Standards
 - TOP 002-4 R1 has a phase angle requirement for the Operational Planning Analysis.
 - TOP 001-4 R13 has a phase angle requirement for the Real-time Assessment.
- NERC Phase Angle Monitoring technical reference document dated June 2016 notes that voltage stability and phase angles are related.

Distributed Parameter Transmission Line



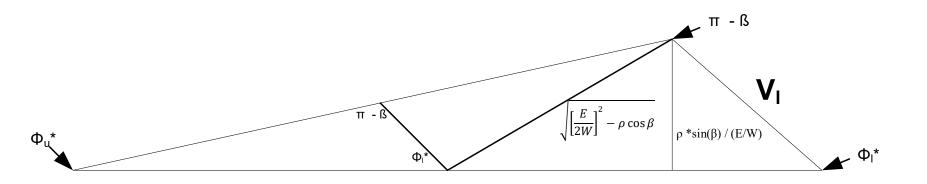
• Distributed Parameter Transmission line with

- **E** Source voltage
- V Load voltage
- **S** Load S
- Y Propagation constant
- Z_c Characteristic impedance
- The next slide displays a Voltage Stability Triangle that encapsulates the distributed parameters of transmission line.
 - Use triangle to describe the voltage stability index TVSI and determine the **phase angle** ϕ_u of the load voltage V.

Voltage Stability Triangle

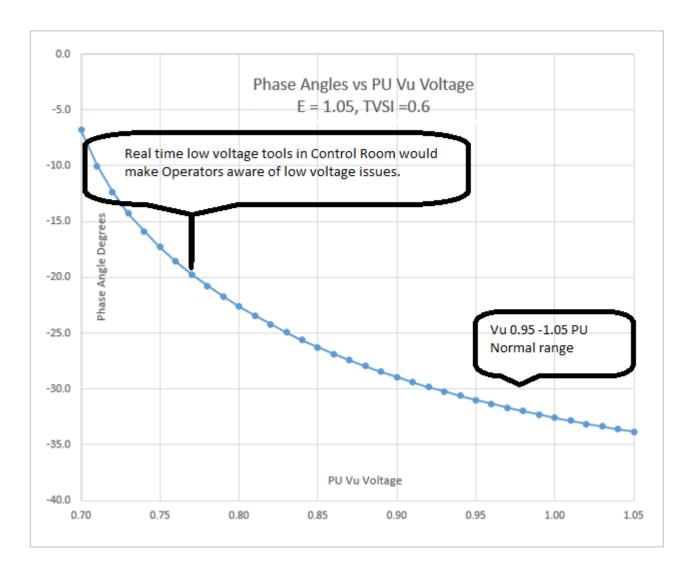
BOUNDLESS ENERGY.

- V_u is the load voltage magnitude on the upper side of the PV curve.
 - V₁ is the voltage magnitude on the lower side of the PV curve.
- The voltage stability index **TVSI** equals V_1/V_u .
 - TVSI approches 1 when we are near the apex of the PV curve.
- The **phase angle** ϕ_u is the angle of the load voltage V_u with respect to the source voltage E.
- W is a factor that elongates the source voltage.
 - For a 250km line, W elongates the voltage by about 5%.

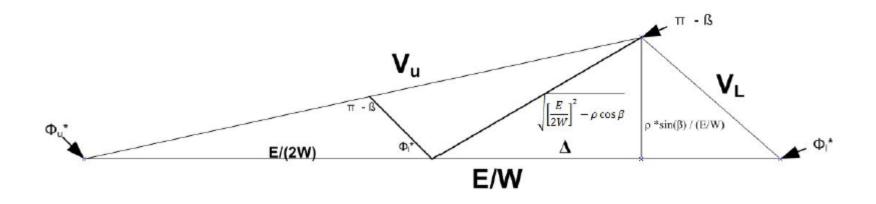


Voltage Stability Triangle

- Use the triangle as a thinking tool.
- What is the phase angle φ_u for various V_u voltages and a given TVSI (V₁ / V_u).


- What load S drives the condition.

Constant TVSI and Phase Angles

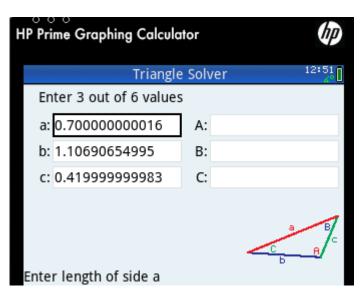


Voltage Stability Triangle

 Next three slides examine phase angle φ_u associated with low voltages and normal voltages.

- Show the associated load S.

Low Voltages, Lagging PF Load with TVSI=0.6


• 1.) Given:

E:	1.05	KV:	345
P:	1.330807331	Q:	3.4201208886
α:	0.066/1,000	β:	1.29/1,000
SI:	285	MI:	250

• 2.) Solve:

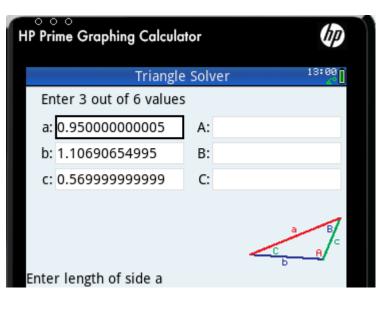
VOLT TL.VU	
-	0.700000000164-6.77682980664
VOLT_TL.VL	
	0.4199999999844-11.3423365418
VOLT_TL.TVSI	0.599999999963

 Answer: φ_u = -6.8 degrees • 3.) Triangle visualisation:

Triangle	e Solver
Solution found	
a: 0.700000000016	A: 11.3423365417
b: 1.10690654995	B: 161.880833652
c: 0.419999999983	C: 6.77682980721

Normal Voltages, Leading PF Load with TVSI=0.6

• 1.) Given:


E:	1.05	KV:	345
P:	6.7484687254	Q:	-0.3839815
α:	0.066/1,000	β:	1.29/1,000
SI:	285	MI:	250

• 2.) Solve:

VOLT_TL.VU	
-	0.950000000064-30.9939523928
VOLT_TL.VL	
	0.5699999999994-59.1202101682
VOLT_TL.TVSI	0.599999999995

Answer:
 φ_u = -31 degrees

• 3.) Triangle visualisation:

Triangle	Solver	09:35
Solution found		
a: 0.950000000005	A: 59.12021016	583
b: 1.10690654995	B: 89.88583743	389
c: 0.5699999999999	C: 30.99395239	929
	_	1
	C B	®

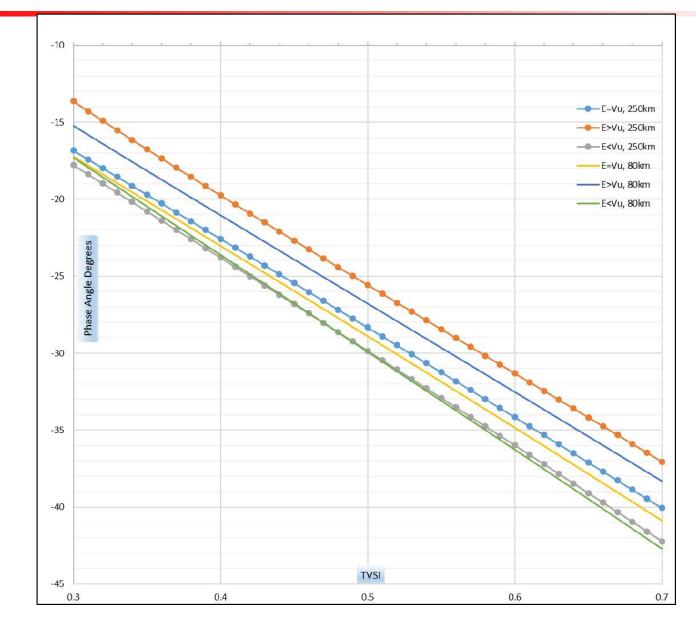
Normal Voltages, Leading PF Load with TVSI=0.6

- Bus voltages can look good and yet TVSI can be relatively high!
- Phase angles <u>can provide</u> an indication of the TVSI level for Normal Voltages.

Phase Angles as a Proxy for Voltage Stability

- Existing real time State Estimator tools in the AEP control room already address low voltage magnitudes and voltage drop limitations outside the normal voltage range.
- We establish the phase angle loci associated with a Triangle Voltage Stability Index (TVSI) for EHV voltages in the normal range of 0.95 -1.05PU range.
- Compare the established phase angle against a PSSE TVSI study.

Phase Angles as a Proxy for Voltage Stability


- On next two sides...
 - Display Phase Angles vs TVSI
 - 0.95 PU < E < 1.05 PU
 - 0.95 PU < V_u < 1.05 PU
 - For E=1.05 and V_u =0.95 there would be about a 10% voltage deviation.
 - Compare established phase angle loci against a PSSE TVSI study.

Phase Angles vs TVSI

BOUNDLESS ENERGY.

Comparison of PSSE Phase Angles to Phase Angle Loci

PSSE TVSI Study						Phase Angle Loci for given PSSE TVSI	
From bus	To bus	TVSI	BASE kV	Difference Angle in Degrees	Contingency	Case	Angle Range Degrees ²
A	С	0.6784	138	-38.9°	N –V 345kV + L –V 345kV	2018 Summer SPA South –North transfer	-35.8°, -40.6°
N	v	0.45817	345	-26.3°	L –V 345kV + M –F 345kV	2018 Summer SPA South –North transfer	-23.2°, -27.3°
Р	v	0.41695	345	-23.6°	H –S 345kV + E	2018 Summer SPA South –North transfer	-20.7°, -24.7°
N	w	0.34818	345	-19.2°	L –W 345kV + R –C 345kV	2018 Summer SPA South –North transfer	-16.6°, -20.3°
D	S	0.65237	345	-37.9°	J –R 765kV + D –E 345kV	2018 Summer SPA West –East transfer	-34.3°, -39.6°
D	S	0.53417	345	-30.7°	J –R 765kV	2018 Summer SPA West –East transfer	-27.5°, -32.1°
K	М	0.4547	345	-26.4°	C –J 765kV	2018 Winter SPA North -Southeast transfer	-23.°, -27.1°
K1	М	0.3805	345	-21.9°	C –J 765kV	2018 Winter SPA North - Southeast transfer	-18.6°, -22.4°

Ē

BOUNDLESS ENERGY"

- AEP uses phase angles as a proxy for voltage stability using <u>EHV voltages</u> in the <u>normal</u> <u>range</u> of 0.95 to 1.05 PU to provide situational awareness to system operators on key circuits.
- Existing real time tools in the AEP control room already address low voltage magnitudes and voltage drop limitations outside the normal voltage range.

Appendix - Voltage Stability Triangle Program

BOUNDLESS ENERGY ...

```
1 //HP PRIME CALCULATOR
 2 // Transmission Long Line Load Flow
 3 // W.D. Stevenson, Jr Elements of Power System Analysis, 4th ed.
 4 // (New York: McGraw-Hill, 1982)
 5 // Based on VS = V*Cosh((\alpha +j\beta)*mi) + Zc*I*Sinh((\alpha +j\beta)*mi) equation in
 6 // Stevenson's book.
 7 // E - PU sending voltage
 8 // KV - Base KV
9 // P+jQ - PU receiving load
10 // α +jβ - Propagation Constant / MI
11 // SI - Surge Impedance in Ohms
12 //Michael R Richardson 8/2/2018
13 //
14 EXPORT ET, VU, VL, p, VUn, VLn, Vs, Is;
15 EXPORT TVSI;
16 EXPORT VOLT_TL(E,KV,P,Q,α,β,SI,MI)
17 BEGIN
18 LOCAL VR, VI, VRL, Z, W, Ir;
19 HComplex:=1;
20 HAngle:=1;
21 W:=COSH((α,β)*MI);
22 Z:=SI*SINH((α,β)*MI) / ((KV^2/100.));
23
24 \rho:=(CONJ((P,Q))*Z/W);
25 ET:=E/ABS(W);
26 SideB:=ET:
27 VI:=-IM(ρ)/ABS(ET);
28 \Delta:=ABS(ET/2.)^2-RE(p)-(VI^2);
29 IF Δ < 0. THEN
30 HAngle:=0:
31 RETURN "No solution Δ="+Δ;
32 END;
33 Z5:=(P,Q);
34
35 Δ:=√Δ;
36 VR:=ABS(ET)/2.+\Delta;
37 VRL:=ABS(ET)/2.-Δ;
38 VU:=(VR,VI);
39 VL:=(VRL,VI);
40 VUn:=(VR,VI)/normalize(W);
41 VLn:=(VRL,VI)/normalize(W);
42 SideA:=ABS(VUn);
43 SideC:=ABS(VLn);
44 Ir:= CONJ( (P,Q)) / CONJ(VUn);
45 Vs:=VUn*W + Ir*Z;
46 Is:=Ir*W + VUn*SINH((α,β)*MI)*KV^2/(SI*100);
47 //TVSI:=ABS(VL/VU);
48 Z6:= Vs/Is; //Z @ SOURCE END
49 Z1:=W*VUn +Z*(P,-Q)/CONJ(VUn);
50 Z2:=W*VLn +Z*(P,-Q)/CONJ(VLn);
51 Z7:=SI*SINH((α,β)*MI);
52 Z9:= W: //COSH()
53 TVSI:= ABS(VL/VU);
54 Z8 := 2 * ABS(W)^2 * ABS(\rho) * (1 + COS(ARG(\rho)));
55 Z8:= √Z8; //Ec -critical sending in voltage
56 HAngle:=0:
57 RETURN ABS(VUn)+" 4"+ARG(VUn)+" Δ="+Δ;
58
59 END;
60
```