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SUMMARY 

 

Phasor measurement units (PMUs) allow for the enhancement of power system monitoring and control 

applications and they will prove even more crucial in the future, as the grid becomes more decentralized 

and subject to higher uncertainty. Tools that improve PMU data quality and facilitate data analytics 

workflows are thus needed. In this work, we leverage a previously described algorithm to develop a 

python application for PMU data recovery. Because of its intrinsic nature, PMU data can be 

dimensionally reduced using singular value decomposition (SVD). Moreover, the high spatio-temporal 

correlation can be leveraged to estimate the value of measurements that are missing due to drop-outs. 

These observations are at the base of the data recovery application described in this work. Extensive 

testing is performed to study the performance under different data drop-out scenarios, and the results 

show very high recovery accuracy. Additionally, the application is designed to take advantage of a high 

performance PMU data platform called PredictiveGrid™, developed by PingThings.  
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I. INTRODUCTION 

Phasor measurement units (PMUs) are considered to be a key technology in the development of the grid 

in the next few decades. The enhanced monitoring and control capabilities made possible by the 

increasing number of installed PMUs are crucial to be able to respond to the paradigm shift represented 

by the move towards renewable resources and higher penetration of distributed generation. Yet, one of 

the main challenges in the use of PMU data for real world applications is data quality.  

In a 2017 NASPI report, the PMU Applications Requirements Task Force (PARTF) defines a framework 

for the study of the impact of data quality on applications that make use of synchrophasors [1]. Among 

the many aspects they investigated, data drop-outs are identified as a major issue that plagues PMU data 

and limits the development of PMU applications. For example, a statistical study on the PMU data 

collected by Dominion Energy, Inc. shows that one can expect about 1% of data not being reported at 

any given time. Moreover, the average number of consecutive drop-outs for any given data stream is 

around 3.5, but in some cases up to 120 consecutive samples might be lost “while the data stream is still 

considered live and operational” [1]. While advanced applications are being designed to withstand some 

degree of data drop-out, an accurate and efficient way to recover missing values is crucial for the future 

of PMU-based monitoring and control applications.  

In this framework, successful data recovery can be achieved by leveraging the high correlation between 

PMU measurements which results in the low rank property of PMU data. Recently, many techniques 

for low rank matrix completion have been proposed, such as singular value thresholding [2], atomic 

decomposition [3], and singular value projection [4]. Each of these methods rely on different 

assumptions and thus they are only suited for specific use cases. In [5], some of these techniques are 

applied to the problem of PMU data recovery. In addition to comparing the performance of different 

matrix completion schemes, the authors demonstrate that information cascading matrix completion 

(ICMC) [6] can be applied to PMU data recovery even when the drop-outs are statistically correlated 

and not independent of each other. Moreover, an online algorithm for real-time PMU data recovery is 

proposed. While limited in scope, the numerical results they present are promising and suggest that such 

an algorithm can be used for real world applications. The authors in [7] present a different algorithm to 

leverage the low rank property of PMU data for missing value recovery. Their approach is based on an 

alternating direction method for multipliers which is used to solve the matrix completion problem; while 

the algorithm is computationally highly efficient, the data recovery results are not as good as those in 

[5]. Another example of PMU data recovery can be found in [8], where cubic spline interpolation is 

used to estimate the missing values. 

In this paper, we borrow the basic algorithm proposed in [5] to build an online application for PMU data 

recovery that can be used by utilities on large scale systems. Moreover, we perform thorough 

performance testing to verify the accuracy of the recovery and an in-depth analysis to assign statistical 

guarantees on the quality of the recovered data in real time. The application developed and here 

described can be used for real time data conditioning or offline as necessary for specific studies. It 

represents an effective and simple tool which greatly improves the usefulness of PMU data in the context 

of a data analysis workflow. Such a tool, for example, would be crucial for the use of temporal predictive 

filters for event detection and cybersecurity issues [9]. Previous efforts on PMU data analytics 

undertaken at Dominion Energy focused on the use of OpenPDC for applications such as voltage control 

[10][11]. However, the application described in this work is developed in Python and it is tested in a 

high-performance state-of-the-art cloud-based environment called PredictiveGrid™ by PingThings 

[12]. The remainder of the paper is organized as follows: in Section II, the mathematical background 

and problem formulation are presented; in Section III, the practical implementation of the algorithm and 

the design of the application are described; finally, in Section IV, extensive tests are performed to 

quantify and validate the data recovery performance.   
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II. PROBLEM FORMULATION 

a. Problem setup 

The measurements computed by the PMUs in a system represent time-series data streams which share 

the same sampling times; for this reason, it is useful to organize such data in matrix form. Assume a 

total of 𝑃 individual PMU measurements are collected over 𝑇 time samples. We define the measurement 

matrix 𝑴, where each column indicates one data stream and each row indicates a time sample; thus, 𝑴 

has dimension 𝑇 × 𝑃, as shown by equation 𝑴= [

𝑚1,1 ⋯ 𝑚1,𝑃

⋮ ⋱ ⋮
𝑚𝑇,1 ⋯ 𝑚𝑇,𝑃

] ∈ ℝ𝑇×𝑃 or ∈ ℂ𝑇×𝑃 

   Error! Reference source not found.. It has to be noted that the measurement 

matrix can store either real values (i.e. magnitudes and angles separately) or complex values in 

rectangular form (i.e. complex voltages or currents); the data recovery technique described in this work 

can be applied to both cases.  

𝑴 = [

𝑚1,1 ⋯ 𝑚1,𝑃

⋮ ⋱ ⋮
𝑚𝑇,1 ⋯ 𝑚𝑇,𝑃

] ∈ ℝ𝑇×𝑃 or ∈ ℂ𝑇×𝑃    (1) 

Given the measurement matrix 𝑴, the goal of the data recovery algorithm is to estimate any missing 

measurement(s) from vector 𝒎, which is the vector of measurements collected at time 𝑇 + 1 as 

illustrated in equation 𝒎 = [𝑚𝑇+1,1 … 𝑚𝑇+1,𝑃] ∈ ℝ1×𝑃 or ∈ ℂ1×𝑃   (2).  

𝒎 = [𝑚𝑇+1,1 … 𝑚𝑇+1,𝑃] ∈ ℝ1×𝑃 or ∈ ℂ1×𝑃   (2) 

b. Singular value decomposition 

As mentioned in the introduction, it has been shown before that because PMU data streams are time-

synchronized and because the physical quantities they measure are closely related to each other (by the 

power system topology and electrical physical laws), the measurements are highly correlated both in 

space and time. As a consequence of this observation, a high-dimensional PMU measurement matrix 𝑴 

will be approximately low-rank; that is, the measurements can be approximated in a lower dimensional 

space with negligible data loss. As shown in the following sections, this fact can be leveraged to 

efficiently recover missing data from measurement vectors 𝒎 which are being acquired in real time.  

The first step in leveraging the low-rank nature of the measurement matrix 𝑴 consists in decomposing 
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𝑴𝑇 = 𝑼𝚺𝑽𝑇       (3) 

where the three new matrices have the following dimensions: 𝑼 ∈ ℝ𝑃×𝑃,  𝚺 ∈ ℝ𝑃×𝑇, and 𝑽𝑇 ∈ ℝ𝑇×𝑇. 

The entries of the diagonal matrix 𝚺 

resulting from this factorization are called 

singular values and they can be seen as 

scaling factors of the orthonormal basis 

represented by the 𝑼 and 𝑽 matrices. The 

relative size of these singular values is 

directly related to the rank of the initial 

matrix. To illustrate this, we collected 98 

PMU current magnitudes over 300 

samples (10 seconds at a sampling rate of 

30 Hz) and performed SVD on the 

resulting matrix 𝑴 ∈ ℝ300×98. Figure 1 Figure 1: Singular values of a 300 × 98 matrix. 
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shows the resulting value of the singular values on a log-scale, ranked by size. We can see that the first 

few singular values are a few orders of magnitude larger than the remaining ones, confirming that there 

are just a few important principal components: that is, the measurement matrix 𝑴 can be efficiently 

reduced to a lower dimensional space with negligible information loss. 

Having demonstrated the low-rank nature of a PMU measurement matrix, it is possible to approximate 

𝑴 as 𝑴𝑟 = (𝑼𝑟𝚺r𝑽𝑟
𝑇)𝑇 , where 𝑟 is an integer in the range 1 < 𝑟 < 𝑃 and the subscript indicates that 

the matrices are truncated as follows: 

𝑼 ∈ ℝ𝑃×𝑃

𝚺 ∈ ℝ𝑃×𝑇

𝑽𝑇 ∈ ℝ𝑇×𝑇

⟹    

𝑼𝑟 ∈ ℝ𝑃×𝑟

𝚺r  ∈ ℝ𝑟×𝑟

𝑽𝑟
𝑇 ∈ ℝ𝑟×𝑇

     (4) 

In order to achieve the most accurate data recovery, avoiding overfitting, we need to determine the 

smallest value of 𝑟 that allows for the approximation of 𝑴 within a given error threshold 𝜖. The 

approximation error 𝑒 is defined as shown in equation 𝑒 =
‖𝑴−𝑼𝑟𝚺r𝑽𝑟

𝑇‖

‖𝑴‖
< 𝜖    

        (5) and it is a function of the 𝑙2-norm between the original matrix and its 

approximation using 𝑟 components. The determination of the optimal value for the threshold 𝜖 is 

discussed in the next chapter. 

𝑒 =
‖𝑴−𝑼𝑟𝚺r𝑽𝑟

𝑇‖

‖𝑴‖
< 𝜖            (5) 

c. Data recovery 

Because of the low-rank property of PMU data demonstrated in the previous section, the measurement 

vector 𝒎 at time 𝑇 + 1 can be approximated with low error as the product of the reduced matrix 𝑼𝑟 and 

vector 𝒙𝑟 ∈  ℝ𝑟×1 which corresponds to the representation of the measurements in the lower 

dimensional space. This relationship is demonstrated by equation 𝒎𝑇= 𝑼 𝒙 ≅ 𝑼𝑟 𝒙𝑟  

        (6) below. 

𝒎𝑇 = 𝑼 𝒙 ≅ 𝑼𝑟 𝒙𝑟          (6) 

The data recovery process is based on computing 𝒙𝑟 from the known measurements in 𝒎 and then using 

it to estimate the missing values. Specifically, let’s assume that at time 𝑇 + 1 the measurement vector 

𝒎 is missing one or more values in position(s)  𝑝; the goal is to estimate 𝒎𝑝 (the 𝑝𝑡ℎ sample(s) of 𝒎). 

In this case, equation 𝒎𝑇 = 𝑼 𝒙 ≅ 𝑼𝑟 𝒙𝑟          (6) can be re-

written as in (𝒎𝑝′)
𝑇

≅ 𝑼𝑟
𝑝′

 𝒙𝑟           (7) to only consider the known 

values of 𝒎 and excluding the missing samples: 

(𝒎𝑝′)
𝑇

≅ 𝑼𝑟
𝑝′

 𝒙𝑟           (7) 

where 𝒎𝑝′  indicates the available measurements and 𝑼𝑟
𝑝′

 indicates the rows of 𝑼𝑟 corresponding to the 

available measurements. Given this setup, 𝒙𝑟 can be estimated by solving the minimum least square 

problem shown in equation (8). 

 𝒙̂𝑟 =  argmin
𝒙𝑟

‖𝑼𝑟
𝑝′

 𝒙𝑟 −  (𝒎𝑝′)
𝑇

‖ (8) 

where 𝒙̂𝑟 indicates the estimated value of 𝒙𝑟. At this point, the estimates 𝒎̃𝑝 of the missing values are 

computed by multiplying the rows of 𝑼𝑟 corresponding to the missing values by the vector 𝒙̂𝑟 as shown 

in equation 𝒎̃𝑝 = 𝑼𝑟
𝑝

  𝒙̂𝑟              (9), 
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𝒎̃𝑝 = 𝑼𝑟
𝑝

  𝒙̂𝑟              (9) 

where 𝑼𝑟
𝑝
 is the matrix containing only the row(s) corresponding to the missing measurement(s). 
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III. IMPLEMENTATION 

a. The PredictiveGrid™ platform 

The PredictiveGrid™ platform is an Advanced Sensor Analytics Platform (ASAP) developed and 

commercialized by PingThings. Built specifically to ingest and store high resolution time series data, it 

is an extremely fast and powerful platform for handling large amounts of PMU data. The data recovery 

application described in this work is designed to work in conjunction with the PredictiveGrid™ to 

efficiently process at real time speeds the large amount of PMU data which is being collected by 

Dominion Energy. 

At the heart of PredictiveGrid™ is a database specially designed for the storage of dense time-series 

data called Berkley Tree Database [13]-[14]. The data structure adopted for this database consists in 

storing the raw data points as well as aggregate statistics (maximum, minimum, mean, and point count) 

at different aggregation levels, corresponding to different time resolutions. This structure allows for 

extremely fast querying times as well as enabling efficient data visualization and event identification. 

As an example, a four-node cluster was shown to support the real-time ingestion of data coming from 

over 100,000 PMUs, each reporting at least 20 data streams at 60 Hz. 

b. Data recovery application 

One of the aims of this work is to design and build and effective and easy-to-use tool to improve PMU 

data quality which can be used in the context of offline data analytics. To this end, the algorithm 

presented in Section II is implemented in a standalone Python application.  
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Figure 2 shows a flowchart illustrating the main blocks 

and the logic of the data recovery application. The inputs 

to the function are the measurement matrix (𝑴) and the 

successive set of measurements (𝒎), where one or more 

value are missing. After performing SVD, the algorithm 

determines the value 𝑟 which represents the number of 

principal components (and singular values) to be used. 

This is achieved by iteratively computing the 

approximation error 𝑒 with increasing values of 𝑟, until 

the error is smaller than the predefined threshold 𝜖. 

Preliminary testing has shown that the best results are 

obtained with a threshold value set as 𝜖 ~ 10−3 or 10−4. 

After the optimal value of 𝑟 is computed, the estimates 

of the missing values are calculated by solving equations 

(8) and 𝒎̃𝑝 = 𝑼𝑟
𝑝

  𝒙̂𝑟       

       (9).  

While this algorithm is computationally highly efficient, 

it is to be noted that in the case of some offline studies 

which require large amounts of PMU data over long 

periods of time (hours and days) performing this type of 

data recovery might require considerable amounts of 

time and processing power. This process can be made 

substantially faster by not performing SVD and the 

calculation of 𝑟 for each measurement vector; instead, 

these operations can be done once and the resulting 𝑼 

matrix and 𝑟 used to compute missing values over 

multiple consecutive time samples.  The longer the 

operating conditions are constant over time, the higher 

the number of consecutive measurement vectors that can 

be processed with a common matrix factorization. While not explored in this work, we intend to study 

the trade-off between computational complexity and modelling accuracy as system conditions change 

(especially during events) to determine the optimal sample interval at which to perform SVD and re-

computing 𝑟. 

IV. RESULTS 

This section presents the results of different tests performed to verify the performance of the data 

recovery application developed in this work. The metric chosen to quantify the ability of the algorithm 

to correctly estimate the missing measurements is the normalized percentage difference as shown in 

equation 𝛿𝑝 =  
|𝒎̃𝑝−𝒎𝑝|

𝒎𝑝
× 100      (10) below. For each missing 

measurement 𝑝 we compute the estimation error 𝛿𝑝 as: 

𝛿𝑝 =  
|𝒎̃𝑝−𝒎𝑝|

𝒎𝑝
× 100      (10) 

where 𝒎̃𝑝 is the value of the 𝑝th missing value recovered by the algorithm and 𝒎𝑝 is the corresponding 

actual value.  

The algorithm is tested on a total of 83 PMU streams, representing all current magnitude measurements 

available in the Dominion Energy 500 kV level transmission system; for the following tests, one month 

worth of PMU data is used. Different values for the number of time samples 𝑇 on which the singular 

Figure 2: Data recovery algorithm. 
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value decomposition is performed (see equation 𝑴= [

𝑚1,1 ⋯ 𝑚1,𝑃

⋮ ⋱ ⋮
𝑚𝑇,1 ⋯ 𝑚𝑇,𝑃

] ∈ ℝ𝑇×𝑃 or ∈ ℂ𝑇×𝑃 

   Error! Reference source not found.) are tested, ranging from 5 seconds (150 

samples, at 30Hz) to 20 seconds (600 samples). Since the data recovery performance was almost 

identical in every case, for the following tests 𝑇 = 300 is used, which means that the measurement 

matrix 𝑴 has dimensions 300 × 83.  

Additionally, to further justify the use of SVD and demonstrate its high 

effectiveness on PMU data, the recovery performance of the SVD-

based algorithm is compared to a linear estimator. The linear approach 

estimates a missing value at time 𝑡 = 𝑇 + 1 by performing a linear fit 

of the two previous (known) samples as shown in Figure 3. The missing 

value 𝑥𝑇+1 is thus computed as: 

𝑥𝑇+1 = 2𝑥𝑇 − 𝑥𝑇−1 .    (11) 

 

a. Recovery error with multiple simultaneous drop-outs  

In this section, the robustness of the data recovery application against multiple simultaneous drop-outs 

is verified. That is, the average estimation error is calculated for different scenarios in which an 

increasing number of missing measurements need to be estimated for the same time sample. The test 

consists in randomly dropping 𝑝 measurements from vector 𝒎 and estimate them based on 𝑴 with 𝑇 =
300 samples; for each value 𝑝 from 1 to 83, 100 trials are run (e.g. 100 different 𝒎). The percentage 

error is then measured between each 𝒎̃𝑝 and 𝒎𝑝 and the average for each value of 𝑝 is calculated.  

Figure 4 shows the average estimation error as a function of the percentage of simultaneous data drop-

outs in a measurement vector (calculated as 
𝑝

83
× 100). As we can see, on average the SVD-based 

algorithm can recover a missing value with a very high accuracy of 0.2%. Moreover, even when 20% 

of the measurements at a given time are dropped, they can be recovered with the same accuracy. As 

expected, this approach performs considerably better than the simple linear estimator which shows an 

error 3 to 5 times higher.  

In order to understand the limits of the data 

recovery application, it is interesting to see how 

the performance varies as even more 

measurements are dropped. Figure 5 shows the 

mean estimation error for drop-out rates of up to 

80%. While the error is mostly 

constant up to around 25%, as the 

percentage of drop-outs increases 

beyond 30/35% the recovery error 

Figure 3: Linear estimator. 

Figure 4: Average estimation error as a function of 

the percentage of simultaneous missing values 
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quickly rises reaching 8%. Overall, the performance of the SVD-based algorithm is extremely 

satisfactory considering that, as explained in the introduction, normally around only 1% of data is subject 

to drop-out at any given time.  

Finally, while the linear estimator has higher error rates for low drop-out percentages, its behavior is 

constant and does not depend on the number of drop-outs in a measurement vector. This can be explained 

by the fact that, unlike the SVD-based algorithm, the linear estimator is used on each stream 

independently and does not rely on information from other streams. 

 

 

 

b. Recovery performance of each data stream 

In the previous section, for each measurement vector 𝒎, values were dropped by randomly selecting 𝑝 

measurements in each trial; thus, the resulting estimation errors only describe the average performance 

of the algorithm. Since the data recovery process is based on the fact that PMU measurements are highly 

correlated, we can assume that the 

recovery performance will vary 

between each data stream depending 

on how many similar measurements 

there are and on how strong the 

correlation is.  

In this test, each measurement stream 

is studied independently: given a 

vector 𝒎, each measurement 𝑝 is 

dropped, one at a time, and the error 

𝑒𝑝 computed. This process is repeated 

for 50 different 𝒎 vectors and the 

average error for each measurement 𝑝 

is calculated.  

Figure 6 shows that the average recovery error is different for every measurement. In the case of the 

SVD-based algorithm, most of the measurements can be recovered with an error of 0.2% or lower. 

However, some streams show a much higher error reaching 1%. When performing data recovery on a 

new dataset, the results of this test can be used as a way to determine and assign a confidence score to 

the estimated values depending on the measurement stream that was missing.  

Finally, it can be seen that the linear estimator consistently performs worse than the SVD-based one and 

in some cases it shows extremely high error peaks which are not present in the results of the more 

advanced algorithm.  

 

c. Performance in case of consecutive data drop-outs on one stream 

In this section, the performance of the data recovery algorithm is studied in the case of consecutive drop-

outs of the same measurement. For this test, a stream 𝑝 is selected and the measurement at time 𝑡 = 𝑇 +
1 is estimated; the estimation error 𝛿𝑝,𝑇+1 between the real value 𝒎𝑝,𝑇+1 and the estimated value 𝒎̃𝑝,𝑇+1 

is computed. At this point, the measurement matrix 𝑴 is updated by substituting the real value of 𝒎𝑝,𝑇+1 

with the one just estimated. After that, the successive value 𝒎̃𝑝,𝑇+2 is estimated and the error calculated. 

This process is repeated up to time 𝑡 = 𝑇 + 100, and it simulates what would happen if 100 consecutive 

Figure 5: Average estimation error as a function of the percentage 

of simultaneous missing values for high drop-out rate 

 

Figure 6: Average estimation error for each individual 

measurement  
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samples (over 3 seconds) of stream 𝑝 were lost and had to be estimated. The procedure just described is 

used for 75 different values of 𝑝, and the average error at each time step 𝑡 is calculated.  

Figure 7 shows the average error over the 75 trials as a function of the number of consecutive drop-outs. 

As we can see, even if a data stream is lost 

for many consecutive samples, the SVD-

based algorithm maintains good recovery 

accuracy. It is interesting to notice how the 

average error slowly increases from around 

0.2% to about 0.4%. It is also important to 

reiterate that the average length of drop-

outs observed in real data is only 3.5.  

Since the SVD-based algorithm estimates 

missing values based both on the currently 

observed measurements as well as the past 

values up to 𝑇 samples before (𝑇 = 300 in 

these tests), it is very robust against 

consecutive drop-outs. This is not the case 

for the linear estimator as shown in Figure 

8. Since each estimate is only based on the 

previous two samples, the error is 

compounded and it quickly diverges to 

very high values. To further illustrate this, 

when testing the linear estimator, from 

time sample 𝑡 = 15 to 𝑡 = 18 the 

estimated values are substituted with the 

true values. As expected, when using true 

values, the error immediately goes back to 

lower levels but it starts diverging again as 

soon as the estimated value are again used 

for the estimation of successive samples.  

V. CONCLUSIONS 

In this paper, we have described the design of a python application to perform data recovery of missing 

PMU values. The algorithm uses SVD to leverage the low-rank nature of PMU data which originates 

from the high spatio-temporal correlation existing between neighbouring measurements. We have 

shown that this approach guarantees excellent recovery performance under different scenarios, both with 

simultaneous drop-outs and consecutive drop-outs. In fact, all the cases tested represented extreme 

scenarios of bad data quality; in reality, the drop-outs we observe are much less severe. This application 

represents a valid tool to improve the workflow of PMU data analytics, assisting in the development of 

new applications. 
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