

Current and voltage – our passion

PESCRIPTIONS FOR THE POWER GRID IN THE DIGITAL AGE

WideBand Voltage Sensors For The Modern Substation

Presentation Date: October 29, 2018 Presented By: Theo Laughner, PE Acknowledgements: Erik Sperling, Florian Gegier

Presentation Outline

- Introduction
- Impacts To The High Voltage Equipment In A Network
- Types Of Instrument Transformers For Voltage Measurement
- Theoretical Aspects of RC-Dividers
- Frequency Response Behavior Of RC-Dividers
- Conclusions

Introduction

Generation

Harmonic Emissions – Per IEEE 519 Limits

Other Emission Sources

Equipment	Voltage dips	Voltage swells	Harmonics	Interharmonics	Subharmonics	Supraharmonics	Slow voltage variations	Fast voltage variations	Transients	Voltage unbalance	Frequency variations	DC components
PV inverters	X											
Production units	X										X	
Active converters	X	x	x	x	x	X	X	X	X	X	X	X
LED lamps				x				X				
Power line communication						X			X			
Transformers						X			X			
Rotating machines						X			X			
Cable insulation						X						
Instrument transformers						X						
Three-phase converters										X		

Frequency Content

Impacts To The High Voltage Equipment In A Network

- Increasing of power losses within the network
- Increasing electric stresses within the HV insulation system (permanently as well as transient)
- Thermal stresses within the connected equipment due to harmonic currents
- Increasing sound noise emission (transformers, coils, capacitors, etc.)
- Incorrect control of equipment

PFIFFNER

Current and voltage – our passion

- Faulty activation of protection equipment (old protection system)
- Forced aging of high voltage equipment

Types Of Instrument Transformers For Voltage Measurement

- Potential Transformer (PT)
 - Magnetically Coupled
 - Most Frequently Used
- Capacitive Coupled Voltage Transformer (CCVT)
 - As the name suggests capacitive coupling
 - Mature technology, but less frequently used
- Optically Coupled Voltage Transformer
 - Uses Faraday effect.
 - In Development.

Current and voltage – our passion **GRID-RX INC**

PFIFFNER

Frequency Response – Magnitude Accuracy

Legend 36kV-VT(light green) 72.5kV-VT(dark green) 123kV-VT(blue) 245kV-VT(purple) 420kV-CTVT(red) 420kV-RC-divider (yellow)

Frequency Response – Phase Shift Error

PFIFFNER

Current and voltage – our passion

GRID-RX INC

Legend 36kV-VT(light green) 72.5kV-VT(dark green) 123kV-VT(blue) 245kV-VT(purple) 420kV-CTVT(red) 420kV-RC-divider (yellow)

V₁: Primary voltage
V₂: Secondary voltage
C₁: Primary capacitance
R₁: Primary resistance
C₂: Secondary capacitance
R₂: Secondary resistance
i_C: Capacitive current
i_R: Resistive current

$$\underline{Z}_{1} = \frac{R_{1}}{1 + j\omega C_{1}R_{1}}$$
$$\underline{Z}_{2} = \frac{R_{2}}{1 + j\omega C_{2}R_{2}}$$
$$\underline{Z}_{1} = \frac{R_{1}}{1 + j\omega C_{1}R_{1}} + \frac{R_{2}}{1 + j\omega C_{2}R_{2}}$$

$$\underline{k}_{C}(j\omega) = \frac{C_{1}}{C_{1} + C_{2} \cdot \frac{(1 + 1/(j\omega C_{2}R_{2}))}{(1 + 1/(j\omega C_{1}R_{1}))}}$$

$$\underline{k}_{R}(j\omega) = \frac{R_{2}}{R_{2} + R_{1} \cdot \frac{(1 + j\omega C_{2}R_{2})}{(1 + j\omega C_{1}R_{1})}}$$

$$\begin{pmatrix} f \to \infty \\ \frac{Z_{2}}{Z_{\text{total}}} = \frac{C_{1}}{C_{1} + C_{2}} \end{pmatrix}$$

$$\begin{pmatrix} f \to 0 \\ \frac{Z_{2}}{Z_{\text{total}}} = \frac{R_{2}}{R_{2} + R_{1}} \end{pmatrix}$$

$$\tau_1 = \tau_2 \rightarrow R_1 \cdot C_1 = R_2 \cdot C_2$$

1. $\tau_1 > \tau_2$, undercompensated 2. $\tau_1 = \tau_2$, compensated 3. $\tau_1 < \tau_2$, overcompensated

In case 2, the secondary voltage follows the primary voltage with a fixed time delay:

$$T_{\rm a}=2.2\cdot\tau_1=2.2\cdot\tau_2$$

 For a variety of reasons, it is not possible to perfectly match the primary and secondary components, therefore:

•
$$\tau_1 \neq \tau_2 \rightarrow R_1 \cdot C_1 \neq R_2 \cdot C_2$$

• Frequency-dependent error formulas may be derived.

Ĩ

PFIFFNER

Current and voltage – our passion

DC

GRID-RX INC

Legend Type: AIS RC-divider Voltage accuracy – blue Phase displacement – green

PFIFFNER

Current and voltage – our passion

DI

GRID-RX INC

Ĩ

Legend Type: GIS RC-divider Voltage accuracy – blue Phase displacement – green

PEIFFNER

Current and voltage – our passion

GRID-RX INC

PFIFFNER

Current and voltage – our passion

GRID-RX INC

Legend Type: GIS RC-divider Input Signal: Impulse Reference – Blue Measured – Red

PFIFFNER

D(4)

Current and voltage – our passion GRID-RX INC

Legend Type: AIS RC-divider Input Signal: Step Response Reference – Blue Measured – Red

Conclusions

- The grid is becoming a "more noisy" place.
- Traditional measurement transformers may lack the bandwidth to accurately observe phenomenon on the grid.
- There are new types of measurement transformers which provide adequate frequency response with low measurement error.
- Final thought present standards may not have accuracy classes which cover all of the necessary functions in the modern grid: revenue metering, protection, power quality measurement, etc.

Questions?

Current and voltage – our passion

erik.sperling@pmw.ch florian.gegier@pmw.ch theo@powergrid-rx.com