

Parameterization of Aggregated Distributed Energy Resources (DER_A) Model for Transmission Planning Studies

Inalvis Alvarez-Fernandez Deepak Ramasubramanian Anish Gaikwad Jens C. Boemer

dramasubramanian@epri.com

CIGRE US National Committee 2018 Grid of the Future Symposium

Reston, VA

October 29, 2018

How to find parameter values for the model? Current focus is on voltage thresholds.

Approach

- Develop detailed distribution feeder model in OpenDSS (<u>http://smartgrid.epri.com/SimulationTool.aspx</u>)
 - Inverter location, size, trip characteristics are modeled from the actual information available.
- Perform simulations
 - Apply sags at the substation with different magnitudes
 - Sensitivity analysis: stochastic variation in terms of location, and type of inverters (legacy vs. new, size, trip settings etc.)
- Find vIO, vI1, vhO, vh1 based on the simulations
- Potentially repeat the analysis for different feeders types (mostly residential, residential-commercial mix etc.)

Line to neutral voltage profile of 8500 node feeder without any additional inverters and balanced loads

Individual Legacy Inverter Description

- Group A (residential R-DER)
 - -P = 15kW
 - -S = 15kVA
 - Under voltage trip = 0.88pu for 0.1s
- Group B (commercial R-DER)
 - -P = 35kW
 - -S = 35kVA
 - Under voltage trip = 0.5pu for 0.1s
- Both are 3-phase, roughly based on IEEE 1547-2003
 - Only legacy inverters in the present analysis

Play-in Voltage Sags/Swells Simulations

ELECTRIC POWER

RESEARCH INSTITUTE

Only Group A inverters – Single location set, 6 sag depths

- Each indicated sag depth is multiplied by initial substation voltage for actual depth.
- Represents a simulation carried out with 100 DERs each of 10kW

Translation to an Under Voltage Trip Characteristic

Preliminary values for DER_A trip characteristic

How does location of inverters on the feeder play a role?

ELECTRIC POWER RESEARCH INSTITUTE

EPC

Would a transmission planner see the same behavior from the aggregate model?

Values of r and X of the equivalent feeder have been assumed

Parameterization of DER_A model assuming Group A

ELECTRIC POWER

RESEARCH INSTITUTE

2

EP

Comparison of results

Conclusions and open questions...

- It is possible to parameterize the aggregated model using detailed simulations
 - The response in positive sequence matches well
- How to generalize the DER_A trip parameters w.r.t.
 - Inverter location on feeder
- How does the parameterization expand to various different feeder configurations?
- Can we obtain equivalent feeder impedances?
- How to model advanced inverter functions?
- Impact of networked distribution grids?

Together...Shaping the Future of Electricity

