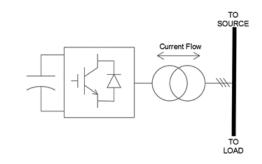
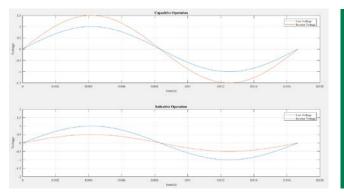
D-STATCOM Technology and Principles

Christopher J. Lee Senior Power Controls Design Engineer Electric Distribution Division Mitsubishi Electric Power Products Inc. (MEPPI) Christopher.lee@meppi.com

MITSUBISHI ELECTRIC POWER PRODUCTS, INC.


D-STATCOM Intro

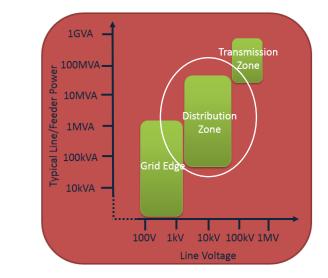

- Applying Distribution STATCOM
- Operating and Control Modes
- Distribution Applications
- Topology Selection

WHAT IS A STATCOM?

- Static Synchronous Compensator
 - Replaces unloaded synchronous machines to control reactive power
- Comprised of: IGBT based voltage source converter to convert DC to AC voltage at its terminals in order to control bi-directional power flow
- By regulating the output voltage of the STATCOM, the inverter can source or absorb vars with respect to the connected power system.
- Utilizing high switching frequencies in the kHz, can respond to rapidly changing grid conditions and offer increased dynamic reactive compensation

Capabilities

- Volt-Var Optimization (VVO)
- Conservation Voltage Reduction (CVR)
- Current Phase Balancing
- Harmonic Mitigation
- var Regulation
- Power Factor Correction
- Voltage Stability
- Transient Over/Undervoltage Reduction


Applications

- Distributed Generation Integration
- Voltage Imbalance Situations
- IEEE519 Compliance (Harmonics)
- Peak Demand Shaving
- Power Quality Requirements
- Asset Life Maximization
- Industrial Load Compensation (Arc Furnace, Inductive Pulsed Loads)

TARGETING the 3rd "ZONE" of DELIVERY

Zone	Line Voltage	Description	
Transmission	69kV - above	High power transmission prior to primary step down transformer	
Distribution	4.16kV-69kV	Portion from secondary of step down transformer to service transformers	
Grid Edge	4.16kV -below	Area of grid after step down transformers to home/consumers. Referring to pole mount service distribution	

Transmission vs Distribution STATCOM

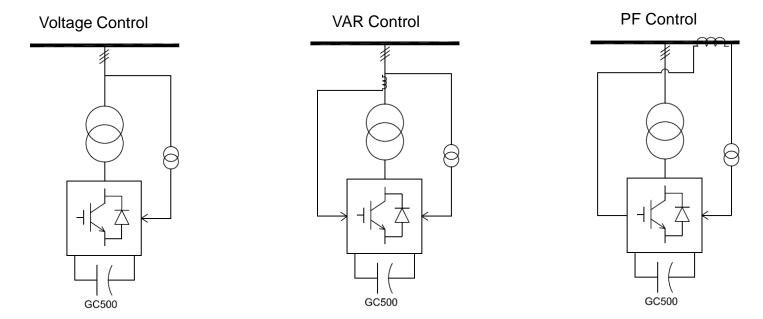
VS

Transmission STATCOM

- Typically >100MVAR
- Centralized solution applied at transmission side, typically single STATCOM/SVC for entire transmission line
- Power Flow Support
- Generator Support
- Voltage instability issues
- Over voltage issues
- Utility scale substation installation
 and cost

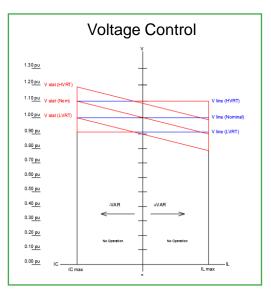
Distribution STATCOM

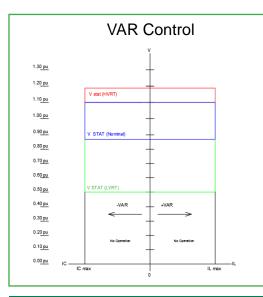
- Typically >500kvar
- Interface directly at the same zone with utility DER
- Cover total feeder length with VVO, CVR, imbalance compensation, and provide transient stability
- Smaller capacity system allows for single cycle or less response time
- Harmonic mitigation at the load
- Can replace or reduce need for traditional VVO/CVR equipment(Cap banks, LTCs, etc..)

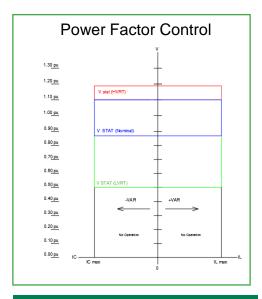

WHY DISTRIBUTION?

- Distribution Zone typically less than 30MVA
- Distribution feeders present unique challenges compared to transmission
 - Direct interconnect with DERs, Bidirectional power flow, Industrial Loads, and three and single phase faults and imbalanced loads
- An opportunity exists to support high power distribution zone with a medium power solution (>500kvar), providing inductive and capacitive correction
- Implement advanced power electronics technology at distribution voltages, minimizing system current
- Interface directly at the same zone with utility DER
 - Previous IEEE 1547 covered distributed energy resources up to 10MVA
 - Provide voltage stability at the source
 - Support renewable integration
- Can integrate with traditional VVO/CVR equipment(Cap banks, LTCs, etc..) while increasing asset life or replace exsiting equipment while delaying re-conductoring

D-STATCOM: OPERATIONAL MODES

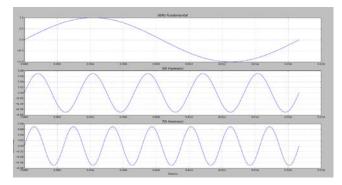

> 3 typical Distribution STATCOM control modes:


- Each control mode will regulate a different aspect at the point of common coupling (PCC) or within the distribution feeder
- > D-STATCOM output characteristics will vary depending on the control mode selected
- > In all cases, D-STATCOM will regulate current to ensure current remains under control


D-STATCOM: OUTPUT CURVES

- Voltage control mode will regulate the input terminals of the GC500 to a constant voltage
- As the line voltage increases or decreases the D-STATCOM will provide a proportional reactive or capacitive current providing voltage control and sag mitigation

- Controller will regulate output voltage with respect to input voltage to provide constant vars
- Operationally similar to installed capacitor banks or shunt reactors, but with variable output power, allows for var optimization with respect to grid conditions


- D-STATCOM will regulate reactive output power to a power factor set point at the terminals of the STATCOM
- D-STATCOM will adjust voltage to provide appropriate vars to system to correct for reactive power offset

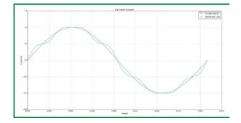
D-STATCOM: HARMONIC MITIGATION

Why Use Harmonic Mitigation?

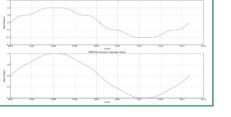
- Modern electric loads utilizing power electronics produce harmonics due to device switching
- IEEE-519 Std. sets power quality recommendations for industry, but is not regulated
- High harmonics can cause issues with motor/generator heating, cable heating, electronic equipment disoperation, and potential resonance issues with tuned capacitor filter banks
- 5th and 7th harmonics are lowest harmonics typically targeted for harmonic mitigation
 - ➢ 2nd -Even Harmonics
 - ➢ 3rd -Triplen harmonics
 - ➢ 4th -Even Harmonics
 - **5**th -Negative Sequence Harmonics
 - 7th Positive Sequence Harmonics

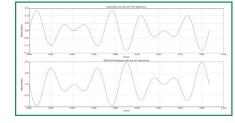
60Hz, 1st,5th, & 7th Harmonics

Table 2—Current distortion limits for systems rated 120 V through 69 kV


Maximum harmonic current distortion in percent of $I_{\rm L}$								
Individual harmonic order (odd harmonics) ^{a, b}								
$I_{\rm SC}/I_{\rm L}$	$3 \le h \le 11$	$11\!\!\leq h\!\leq\!17$	$17\!\leq\!h\!<\!23$	$23 \le h < 35$	$35 \le h \le 50$	TDD		
< 20 ^e	4.0	2.0	1.5	0.6	0.3	5.0		
20 < 50	7.0	3.5	2.5	1.0	0.5	8.0		
50 < 100	10.0	4.5	4.0	1.5	0.7	12.0		
100 < 1000	12.0	5.5	5.0	2.0	1.0	15.0		
>1000	15.0	7.0	6.0	2.5	1.4	20.0		

IEEE-519 Current Harmonic Limits

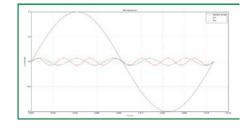

Source: IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems, IEEE Standard 519, 2014.


HARMONIC MITIGATION: CASE STUDY

Step 1) Measure line currents and decompose into harmonics

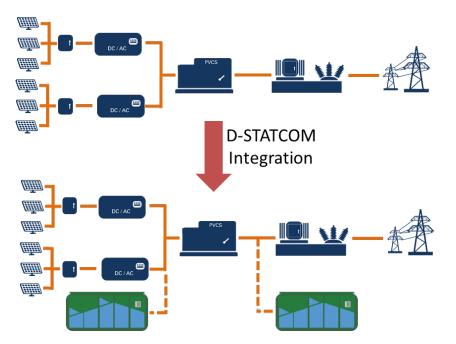
L

Step 2) Synthesis antiphase waveforms at set harmonic frequencies

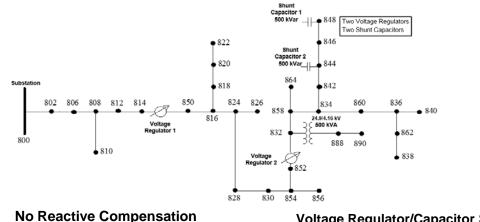

Case Study

- Existing customer load contains individual 5th and 7th harmonics at 7% at rated load for short circuit ratio of 50
- Total THD would be 14%, not IEEE-519 compliant
- After 5% reduction on 5th and 7th harmonic using with full GC500 harmonic mitigation Total THD=2.8%

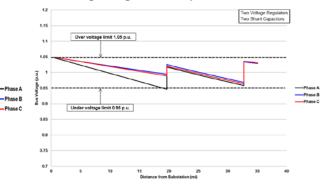
5th and 3rd Harmonics Original (Left) STATCOM (RIGHT)


Step 3) Produce combined waveform at output of the inverter to created compensated line waveform

DER INTEGRATION

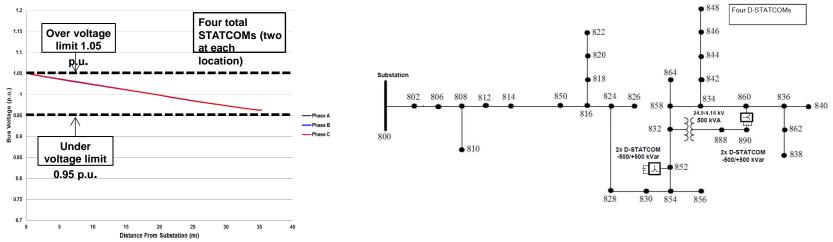

- Modern grid codes require a PV Plant to control reactive power at the point of interconnect (POI) with dedicated smart PV inverters or capacitor banks.
- By applying D-STATCOMs within the PV plant, additional PV inverters can be removed, while obtaining the same output performance.
- The use of D-STATCOMs also provide the potential benefit of harmonic mitigation, adjustable reactive power output, and other dynamic capabilities not available from traditional reactive compensation methods.

By applying a dedicated set of Distribution STATCOMs (D-STATCOM) at the plant terminals to meet dynamic power factor control requirements, or located within the plant itself to compensate for plant losses, a single product with a diverse set of capabilities can be applied to meet customer requirements


FEEDER STUDY

- IEEE 34 node sample feeder study \triangleright performed by MEPPI PSED
- \triangleright Sample Circuit - Published IEEE 34 Node Radial Distribution feeder based on data from test feeder in Arizona
- \triangleright Investigation of STATCOM operability at distribution level using medium sized building blocks in typical higher power feeder location
- 2.5 MVA substation, 24.9kV, 36 mile total \geq feeder
- Traditional compensation techniques to maintain acceptable voltage profile
 - Two in-line voltage regulators \triangleright
 - Two shunt capacitors \triangleright
- \triangleright The voltage profile of a distribution feeder decreases as it extends away from the substation.

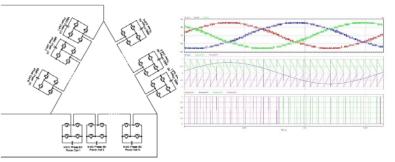
1.2 No Voltage Regulators No Shunt Capacitors 1.15 Over voltage limit 1.05 p.u. 1.1 0.95 0.9 Under voltage limit 0.95 p.u. 0.85 0.8 0.75 0.7 n Distance from Substation (mi)


Voltage Regulator/Capacitor Solution

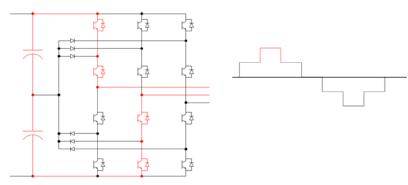
FEEDER STUDY

D-STATCOM Solution

- 2 D-STATCOM units were placed at Nodes 852 and 860 to compensate for low voltage and imbalance situations
- D-STATCOMs can be used in conjunction with or replace existing voltage regulators and capacitor banks to improve the voltage profile on existing distribution feeders.
- Low load conditions or use of DERs in feeders can result in voltages near the maximum acceptable range close to voltage regulation equipment not compensated by traditional techniques



TOPOLOGY APPROACH


MULTILEVEL CONVERTER (STATCOM)

- Reactive power absorption & injection
- Distributed DC bus
- Low harmonic content due to multiple levels
- Limited or no filters required (limited resonance issues with grid)
- Low voltage stress on FWD & IGBT's
- IGBT, Diode, & cap redundancy
- More overall switching devices
- IGBT matching is not required (lower spare parts cost)
- Faster reaction time to charge / discharge capacitors
- Easier to achieve higher voltage level using common building block

MULTILEVEL INVERTER (STATCOM)

TYPICAL "SMART" INVERTER

NPC or Flying Capacitor topology

- Reactive power absorption & injection
- Common DC bus
- High harmonic content due to minimum switching levels
- Large inductor / cap filters required (possible resonance issues with grid)
- High voltage stress on FWD & IGBT'S
- Limited redundancy (IGBT & diodes)
- Less overall switching devices
- Matched IGBT's for voltages > 3kV (higher spare parts cost)
- Slower reaction times to charge larger capacitors
- Higher voltages require placing low voltage devices in series or using higher voltage rated device

A smart inverter cannot equal the performance features of a STATCOM

Thank You

Christopher J. Lee Senior Power Controls Design Engineer Mitsubishi Electric Power Products Inc. (MEPPI) Christopher.lee@meppi.com

