

Impact of Grid Reconfiguration in Distribution Market Clearing and Settlement

Abdulaziz Alanazi & Amin Khodaei
University of Denver
USA

Presenter:

Hossein Lotfi
University of Denver
USA

Introduction

Distributed energy resources (DERs) advantages:

- Increasing the distribution system reliability and resiliency
- >Allowing consumers to partially or fully supply their demand

DERs disadvantages:

>Adding technical complexity to grid management

As a result, distribution grid management becomes a concern of upstream grid operators when DERs deployment in distribution system increases.

The necessity of DSO to manage the distribution grid and solve this added complexity in a local manner.

Introduction

The DSO advantages for the distribution system:

- Managing the grid and market operation of the distribution system
- Allowing participation of the proactive customers in energy market within distribution system
- > Removing the uncertainty of flexible loads (microgrids net load)
- Reducing the required two-way communications between the ISO and proactive customers

Introduction

The market structural in presence of the DSO:

Problem Statement

Grid reconfiguration can help with:

- Maximizing the social welfare in the distribution market
- Providing a level of flexibility in distribution markets
- Better utilization of distributed resources
- Increasing participation of proactive customers in grid operation and market

Distribution System Clearing Model

The objective function of the proposed model:

- Maximizing the system social welfare
- > Simultaneously finding the optimal reconfiguration of the grid
 - The system social welfare is defined as the load benefit of flexible loads (microgrids) minus the cost of purchasing energy from the upstream grid.

The objective function is subject to the following constraints:

- Operation and power flow constraints
- Nodal balance constraint
- The radiality constraint: Keep the grid radial without forming loops.

^{*} Detailed mathematical formulation is available in the paper.

Using modified IEEE 33-bus test system with:

- > 33 buses
- > 32 sectionalizing switches (normally close)
- > 5 tie switches (normally open)

Microgrids

Tie switches

Sectionalizing switches

The potential loops

Loop No.	Lines in the loop				
1	2, 3, 4, 5, 6, 7, 18, 19, 20, 33				
2	9, 10, 11, 12, 13, 14, 34				
3	2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 18, 19, 20, 21, 35				
4	6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 25, 26, 27, 28, 29,				
	30, 31, 32, 36				
5	3, 4, 5, 22, 23, 24, 25, 26, 27, 28, 37				

Microgrids' Characteristics

Segments	1		2		3	
	Quantity	Price	Quantity	Price	Quantity	Price
	(kW)	(\$/kW)	(kW)	(\$/kW)	(kW)	(\$/kW)
MG 1	500	0.065	300	0.039	200	0.027
MG 2	450	0.072	350	0.065	200	0.029
MG 3	400	0.085	400	0.064	200	0.035

The model is solved for the following cases:

- Without grid reconfiguration (forcing all tie switches to stay open)
- With grid reconfiguration (allowing switches to be closed or open, considering radiality constraint)

Comparison between results of Cases 1 and 2:

		Without Reconfiguration	With Reconfiguration	Change
Social Welfare (\$)		150.54	153.56	2%
Upstream power purchase (kW)		1233.09	616.76	-49.98%
	MG1	703.949	753.949	7.1%
Microgrids power (kW)	MG2	600	1000	66.67%
	MG3	142.418	290.765	104.16%
Power Loss (kW)		59.46	41.47	-30.26%
Upstream grid paym	ent (\$)	86.32	43.17	-49.98%

Power flow comparison between cases 1 and 2

Conclusion

The model advocated that the reconfiguration can provide:

- > A level of flexibility in distribution markets to improve the system social welfare
- Better utilization of distributed resources within radial distribution grids
- Capability to serve as a congestion relief and loss reduction method by revising the power flow within the grid

Thank you Hossein.Lotfi@du.edu