

Design and Implementation of an Extensible Platform for Large Scale, Programmatic Transmission Outage Planning Analysis

> 2018 Grid of the Future Symposium October 29-30 Reston, VA

Kevin D. Jones, Ph.D. & Matthew A. Parker Dominion Energy USA

Mojtaba Jalalpour University of Tennessee, Knoxville

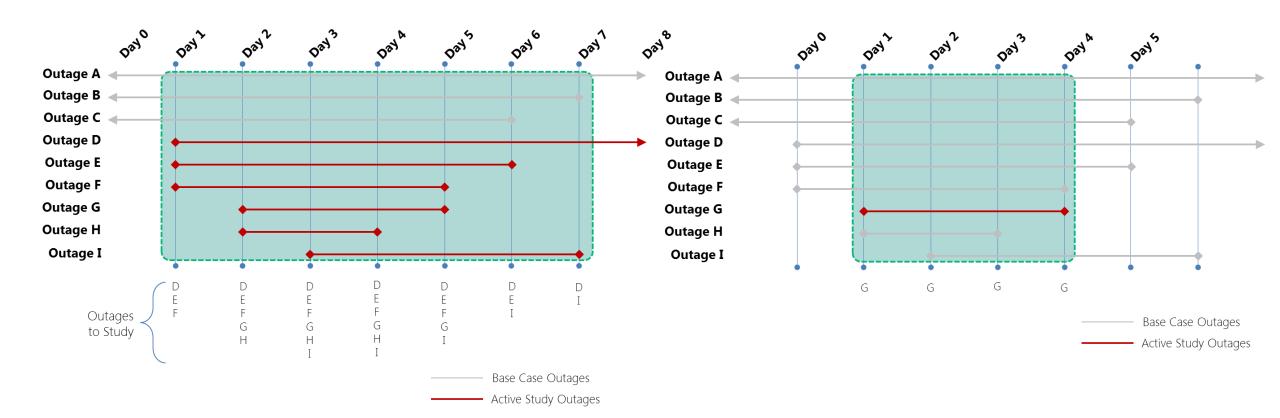
USA

Overview: Outage Planning @ Dominion Energy

Status Quo

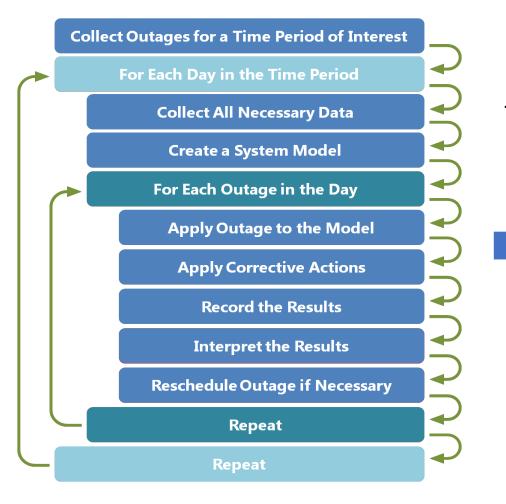
- Manual power-flow and N-1 with human derived corrective actions in the EMS
 - Day Ahead
 - Ten Day Outlook
 - One Month Outlook
 - Two Month Outlook
 - Ad-hoc Long Term Analysis

Challenges

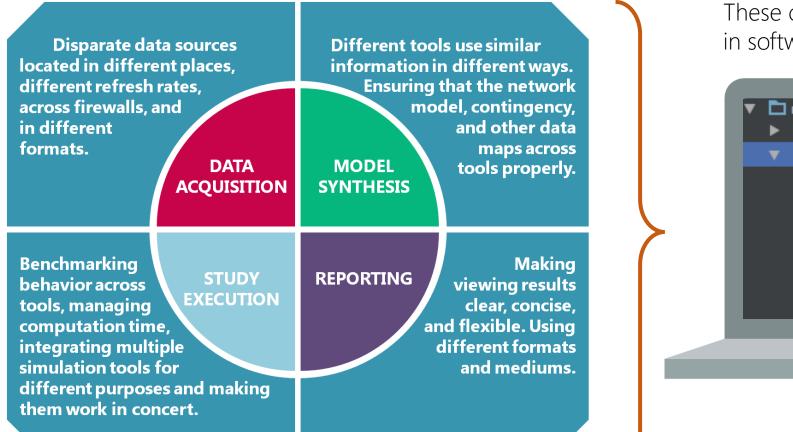

- Industry Challenges
 - Retiring Generation
 - Aging Infrastructure
 - New Technologies
 - Renewables
- Operations Planning Challenges
 - How do you study an unfamiliar system?
 - Limitations of existing tools prevent scaling

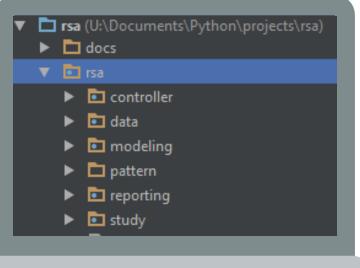
Problem Formulation: Outage Planning Base Classes

Time Period Study


Incremental Outage Study

ANODE


Problem Formulation: Potential for Automation


for each day in time_period:
 for each outage in day:
 outage.run_analysis()
 if outage.OK:
 outage.include_in_base_case = true
 outage.report_corrective_actions()
 else:
 outage.report_violations()

Problem Formulation: Four Domains

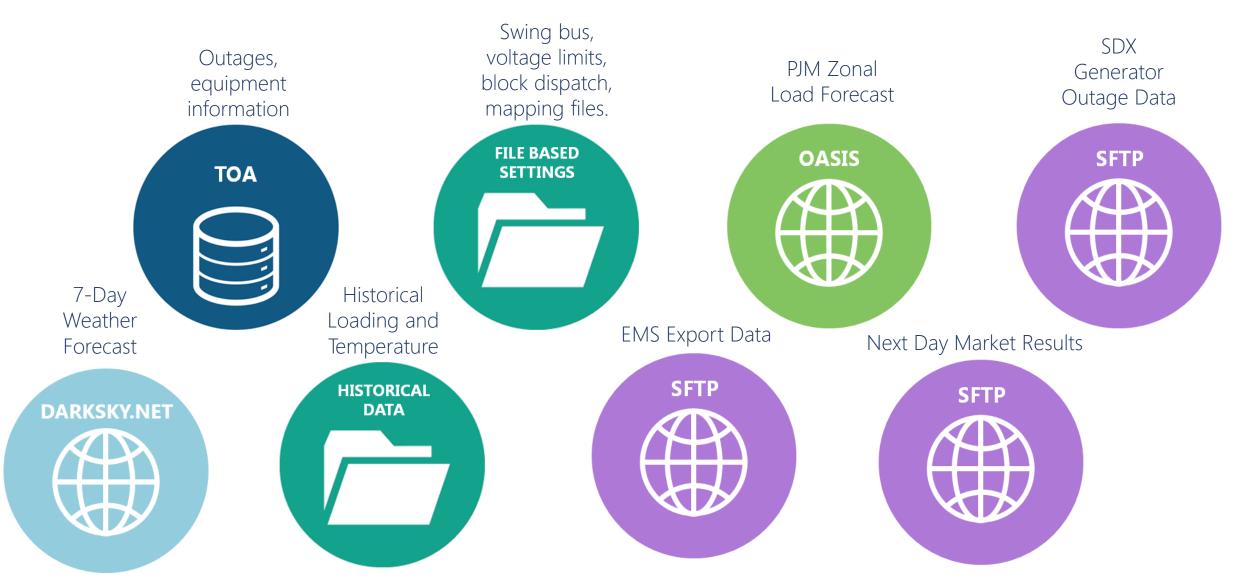
These core concepts are reflected in software architecture

Design

Technology Selection, Data Sources, Model Synthesis,

System Design: Technology Selection

Approaches


- Existing Vendor Solution
 - Only siloed technologies exist
- Custom Vendor Solution
 - Requirements were vague
- EMS Extension
 - Incompatible technologies
- Desktop Application
 - This is a systems integration problem
- In-House Custom Solution

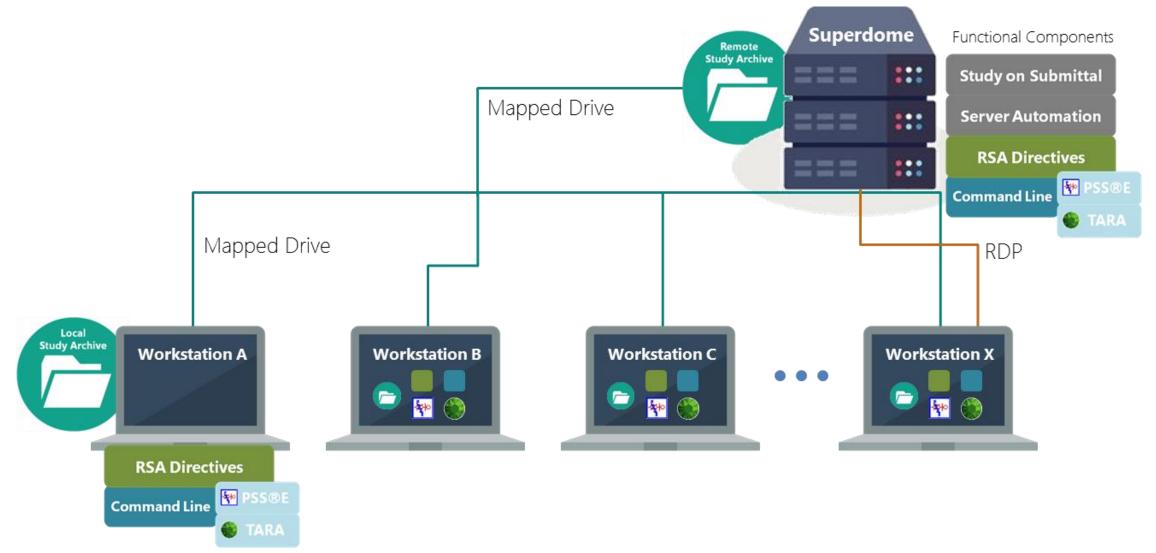
Components

- Siemens PSSE fine modeling
- PowerGEM TARA bulk compute
- GE-Alstom EMS data source
- hdbexport, csv export mechanism
- Windows Task Scheduler automation
- HP Superdome compute
- Network Mounted HDD storage
- Python integration, orchestration, APIs

System Design: Data Sources

System Design: Model Synthesis

- 1. EMS Export Every 10 minutes SE Snapshot
- 2. Export Package *.sav, *.raw, *.con, *.mon, *.sub
- 3. Seed Case Optimally selected from Export Package Archive
- **4.** All In Case Normal Topology, Market Results for Units, No PV, Cleanup
- 5. Alternate Limit Cases A case is created for each limit set in the study
- **6. Base Cases** Alternate Limit Cases handed off to TARA AMB for load scaling, SCRD, corrective actions
- 7. Final Approved Daily cases with all outages present in topology, corrective actions present.



Architecture

Hardware, Software, API, Automation

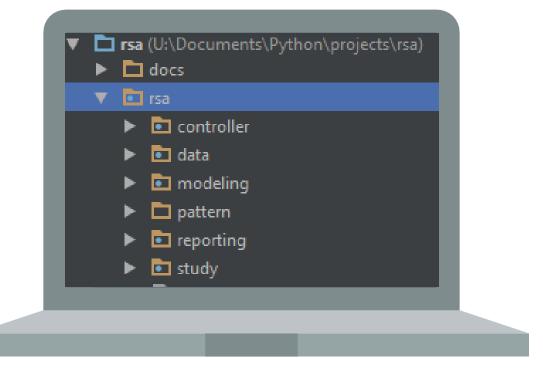


Architecture: Hardware

Architecture: Software

Siemens PSSE v33

• For fine model building and manipulation


PowerGEM TARA

• For bulk computation, ORA protocols

ANODE Code Base (Python v2.7)

• For integration, orchestration, APIs

Architecture: API

• Simple API for custom analysis underpins all system level activities

<pre># create swing bus settings, voltage limit settings study.create settings()</pre>	# here is where you would optionally select the seed case
<pre># create load, temperature, outage schedules study.create_schedules()</pre>	<pre>from rsa.modeling.packages import ExportPackage export = ExportPackage(r"""G:\ETReliabilityStudyAutomation\data\exports\my_export""") study.import_seed_case(seed=export)</pre>
<pre># here is where you would optionally change the load schedule # Example: study.load_schedule['07/17/18'] = 22500.0 study.load_schedule.save()</pre>	<pre># optionally, you can omit the input and let the automation # optimally select the seed case and copy it over to the study folder study.import_seed_case() study.create_seed_case_selection_report()</pre>
<pre># here is where you would optionally change the temperature schedule # Example:</pre>	<pre># create all in case from seed study.create_all_in_case()</pre>
<pre>study.temperature_schedule['07/17/18'] = 96.0 study.temperature_schedule.save()</pre>	<pre># create all rating set variations from all in case study.create_alternate_limit_cases()</pre>
<pre># here is where you would optionally change the transmission outage schedule # Example: ticket = '12-34567'</pre>	<pre># create the tara outage files study.create_tara_outage_file()</pre>
<pre>start_date = study.start_date end_date = study.end_date study.outage schedule.all outages[ticket]['START DATE'] = start date</pre>	<pre># create the files for tara AMB study.create_tara_amb_files()</pre>
<pre>study.outage_schedule.all_outage[ticket]['END_DATE'] = end_date study.outage_schedule.save()</pre>	# run TARA AMB study.run_tara_amb()
<pre># here is where you would optionally change the generator outage schedule # Example: index = 5</pre>	<pre># create the files for TARA ORA study.create_tara_ora_files()</pre>
<pre>start_date = study.start_date end_date = study.end_date aturdy.generation_outages[idata]][index][iStartData]] = start_date</pre>	# run TARA ORA study.run_tara_ora()
<pre>study.generator_outage_schedule.outages['data'][index]['StartDate'] = start_date study.generator_outage_schedule.outages['data'][index]['StopDate'] = end_date</pre>	

Architecture: Automation

- Many great Python libraries for task automation.
- To maximize simplicity, Windows Scheduled Tasks were selected.
- All top-level tasks follow the same pattern

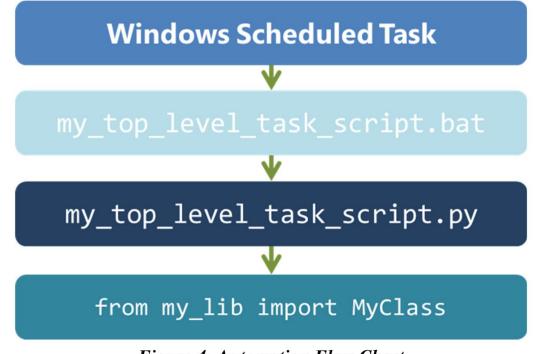


Figure 4: Automation Flow Chart

System Performance

Runtime/Run Count Comparisons

System Performance: Runtime Comparisons

Table 2: Analysis Runtime Comparisons

	Manual Runtime	Platform Runtime	Rate Increase
Next Day Study	4-8 hours	15-20 minutes	12-32X
Ten Day Study	8-12 hours	15-20 minutes	24-48X
One Month Study	14-21 days	90 minutes	224-336X
Two Month Study	14-21 days	90 minutes	224-336X

System Performance: Run Count Comparisons

Table 3: Calendar Day Coverage Comparisons

	Window Size (days)	Manual Rate (runs per day)	Platform Rate (<i>runs per day</i>)	Manual Total (days per day)	Platform Total (<i>days per day</i>)	Rate Increase
Next Day	1 day	1 per day	24 per day	1 day per day	24 days per day	24X
Ten Day	10 days	1 per day	24 per day	10 days per day	240 days per day	24X
One Month	30 days	1 per 30 days	1 per day	1 day per day	30 days per day	30X
Two Month	30 days	1 per 30 days	1 per day	1 day per day	30 days per day	30X
Total	71 days	N/A	N/A	13 days per day	324 days per day	24.9X

Next Steps

• Growing User Traction

- Improved Documentation
- Feature Requests

Analysis Methodologies

- Study-on-Submittal
- Optimal Outage Planning
- Stochastic Analysis
- Dynamic/Transient Stability Constraints for Outage Planning
- Cascading Analysis
- Synthetic Modeling

• System Level Improvements

- Simple Web Front End
- Data Source Improvements
- General Refactoring
- API Refinement

Thank You!

Kevin D. Jones, Ph.D.

kevin.d.jones@dominionenergy.com

304-767-4748

