

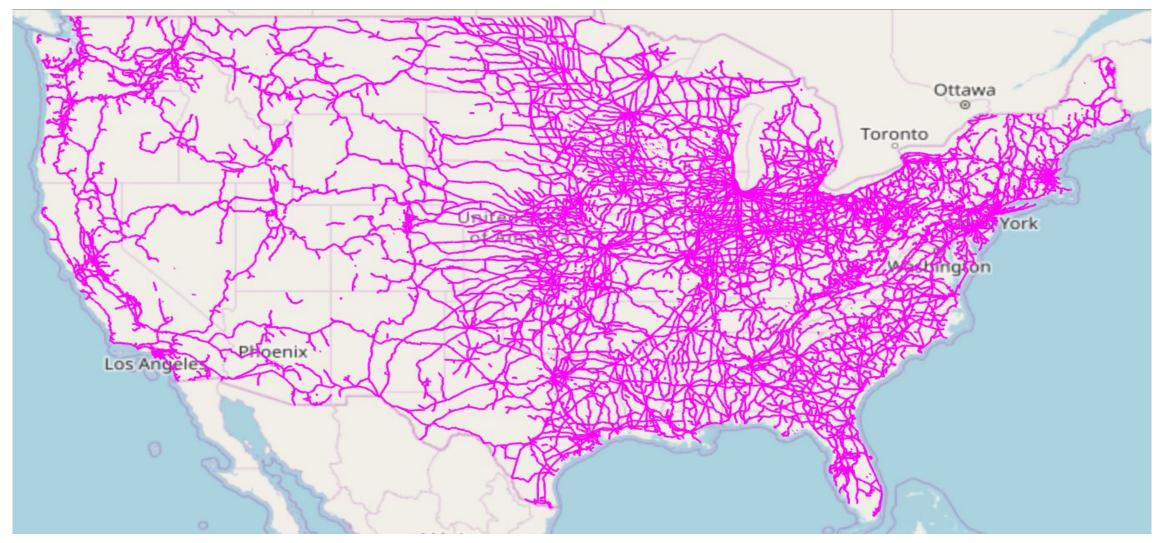
Cable Train: In-Situ Manufacturing of Trackside Underground Cable HVDC Transmission Systems

L. A. GRAY Q. DU A. H. SLOCUM Massachusetts Institute of Technology Precision Engineering Research Group

HVDC in a Renewable Future

- Ideal for connecting to remote renewables → cost of converters offset by eliminating capacitive, inductive, skin effect, dielectric charging losses
- Connection of asynchronous AC grids
- Less materials and less ROW required compared to equivalent AC systems
- VSC more robust to geomagnetically induced current (GIC)
- In 2016, a study by NOAA scientists found that a large-scale, optimized HVDC grid could enable the U.S. to use wind and solar generation to eliminate up to 80% of CO2 emissions while meeting its energy needs at the same cost of electricity as in 2012 [6].
- How can we build these HVDC lines faster and cheaper!?

lagray@mit.edu

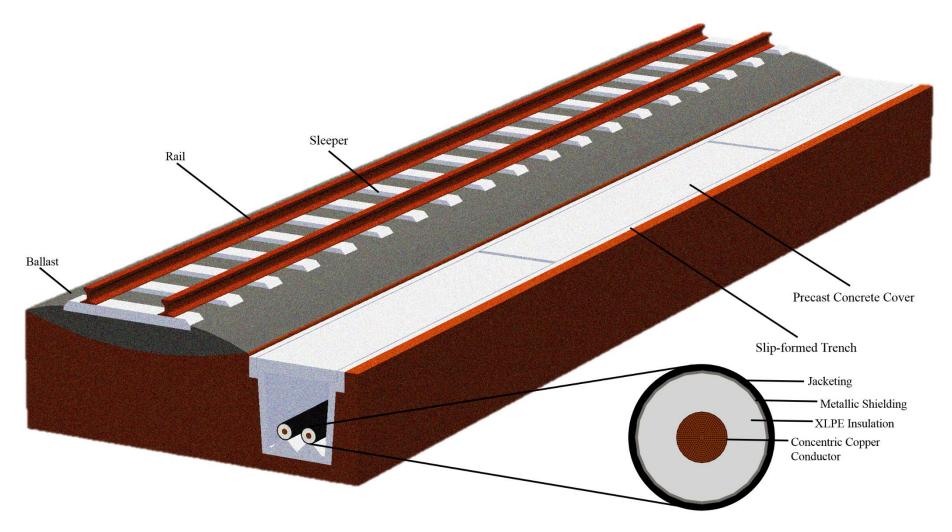

Limitations in overland HVDC construction

- Much of the best wind and solar resources in the U.S. are landlocked
- Overhead lines (OHL) are traditionally used because they are several times cheaper than underground cable (UGC)

 $Cost(UGC)/Cost(OHL) = 4 \rightarrow 14$

- However, external stakeholders have stopped OHL HVDC projects in their tracks...
 - Visual pollution
 - External Magnetic Fields (EMF)
- UGC is invisible, electromagnetically shielded, low loss, less vulnerable to damage, etc.
- What's more expensive: building a UGC system in 3 years or building an OHL system in 10+ years?
- Can we make Cost(UGC)/Cost(OHL) \rightarrow 1?

Co-location on railroads

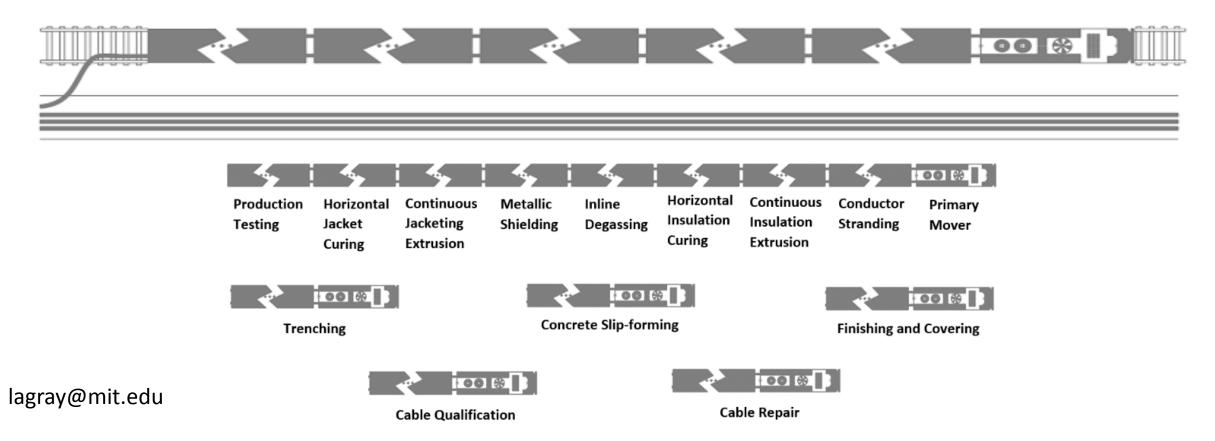


lagray@mit.edu

MIT Precision Engineering Research Group 2018

"Trackside UGC"

- Why not "trackside OHL"?
 - ROW
 - Structures hazardous
 - EMF not compatible with other services
 - Pylons potential obstacles to future development

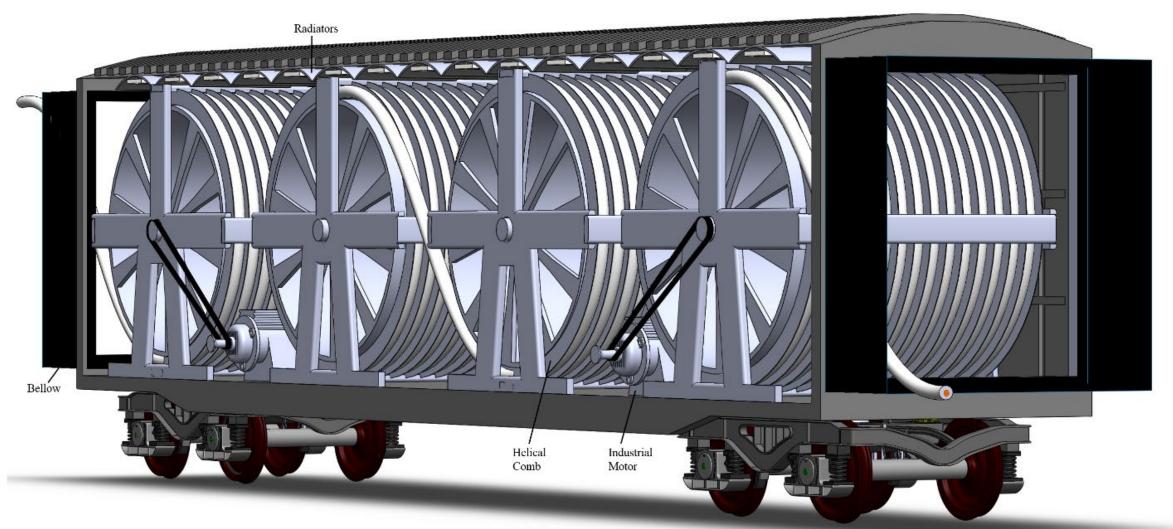

lagray@mit.edu Check out the SOO Green Renewable Rail project on a Canadian Pacific Railway route!

Sure, there are MANY innovative ways to deliver and install long lengths of HVDC cable in trackside space, but...

...can we do more with the opportunities railroads provide?

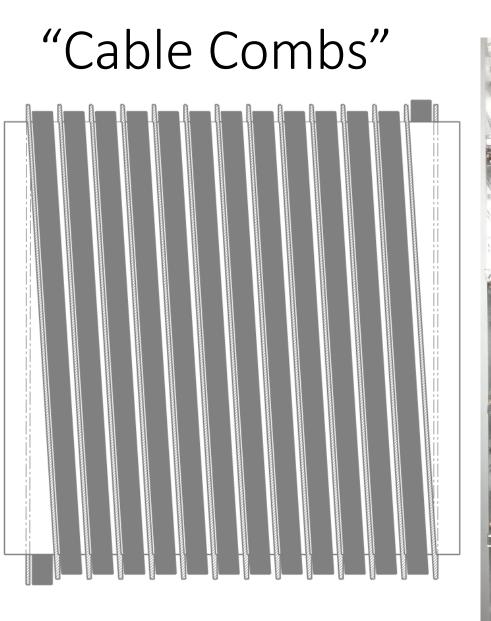
In-situ manufacturing with a "Cable Train"?

- Fully exploit the mobility afforded by railroads
- Eliminate joints \rightarrow decrease initial cost and system failure rate
- Replace cost of reel transportation with the cost of moving raw materials



Challenges

- Continuous Extrusion \rightarrow redundant barrels
- Horizontal Curing → Long Land Die (LLD)
- Inline Degassing \rightarrow we needed to solve this
- Manufacturing standards \rightarrow new (and old) inline sensing
- Stranding, taping, shielding \rightarrow nothing a little buffer can't fix
- Yes we are talking about a HIGHLY synchronized process → but it's nothing that hasn't already been accomplished by submarine cable manufacturing...


lagray@mit.edu

Critical Module – Inline Degassing Car

40x decrease in the length of the degassing section of the train.

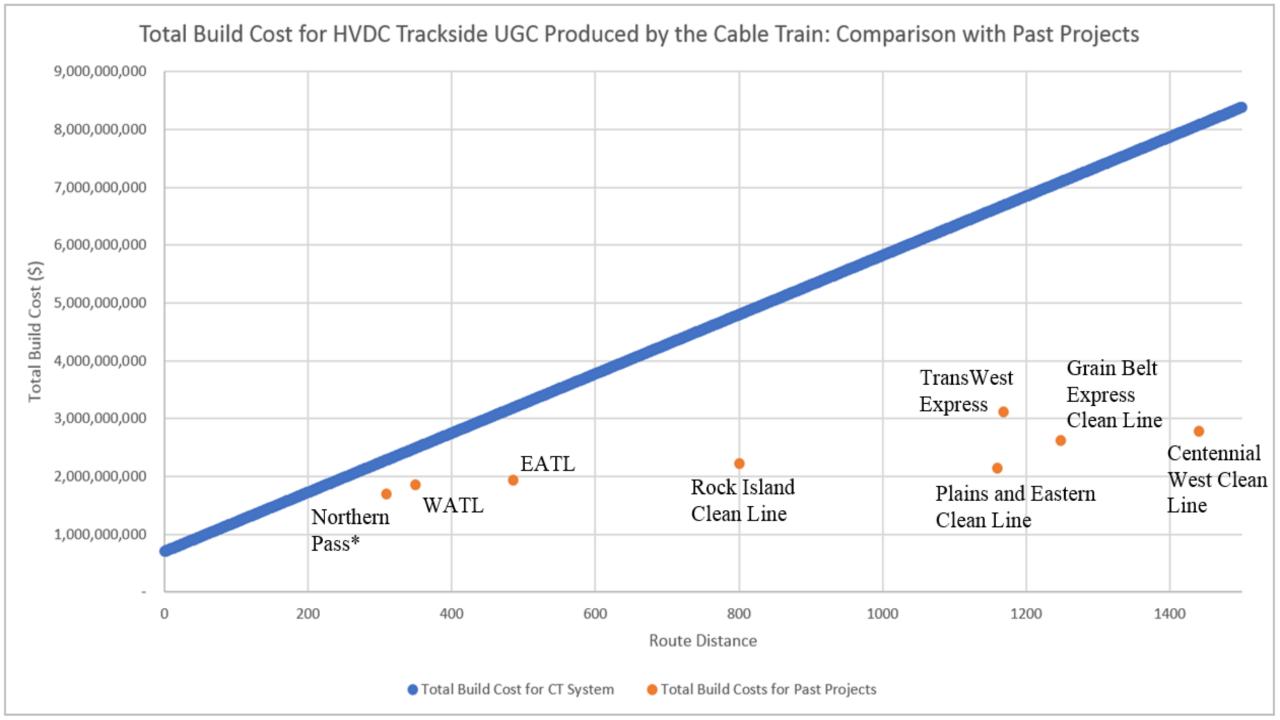
MIT Precision Engineering Research Group 2018

Available

Cable Data and Parameter Input			Copper Stress Calculations				XLPE Insulation Stress Calculations				
Drum/Cable Diameter Factor		22	22 Yield Strength (Pa)			3E+08	Yield Strength (Pa)	2.00E+08			
Cable Insulation OD (m)		0.125	Shear Modulus (Pa)		4.6	0E+10	Shear Modulus (Pa)	4.83E+09			
Conductor OD (m)			E (Pa)		1.1		E (Pa)	1.30E+09			
Diameter of Drums (m) for Degas			EI (Pa*m^4)				EI (Pa*m^4)	1.48E+04			
Diameter of Nuetral Axis of Cable (m)			Radius of Curvature (m)				Radius of Curvature (m)	1.44			
Area of Conductor (m^2)			Curvature (/m)				Curvature (/m)	0.696			
Packing Fraction Circles (Milliken)			0.9069 I (m^4)				I (m^4)	1.13E-05			
Single Conductor Strand Diameter (m)			Internal Moment (Pa*m^3)				Internal Moment (Pa*m^3) Max Bending Stress (Pa)	1.03E+04			
Number of Layers in Conductor			Max Bending Stress (Pa)			5.65E+07					
Total Number of Strands (Concentric Stra	inded)		Density (kg/m^3)		7.76E+03 Density (kg/m^3)			1.27E+03			
Lay Angle (Degrees)			Max weight of suspended cable (N)		2.9		Max weight of suspended cable (N)	2.91E+03			
Max Tensile Traction Force on Cable (N)		1.70E+05					Loading	16%			
Clearance Between Cable on Neighboring	g Drums (m)		Tensile Stress from dead weight (Pa	ı)			Tensile Stress from dead weight (Pa)	4.93E+04			
Distance Between Drum Centers (m)			Total Max Axial Stress (Pa)				Total Max Axial Stress (Pa)	5.66E+07			
Clearance to Bottom of the railcar (m)			Normal Force Drum to Cable (N/m)				Normal Force Drum to Cable (N/m) Delta Deformation of Insulation (m)	3.49E+03			
Max Length of Suspended Cable (m)			Delta Deformation of Insulation (m))			2.48E-05				
Weight Per Meter of Cable (N/m)			Strain				Strain	7.63E-04			
Poisson's Ratio Copper		0.364	Contact Patch Area (m^2) per unit le	ength			Contact Patch Area (m^2) per unit length	3.52E-03			
			Force Constraint				Force Constraint	3.49E+03			
Calculation of Optimum # of Reels per	Railcar	CSX Boxcar	Side Wall Pressure from Drum (Pa)		5.56E+06 Side Wall Pressure from Drum (Pa)			9.91E+05			
Inner Height (m)			Coefficient of Friction XLPE to Stee	el			Coefficient of Friction XLPE to Steel	0.2			
Inner Width (m)			Normal Force from Comb (N/m)				Normal Force from Comb (N/m)	698			
Inner Length (m)			Delta Deformation of Insulation (m))			Delta Deformation of Insulation (m)	8.49E-06			
Drum Diameter (m)			2.75 Strain				Strain	2.61E-04			
Clearance Between Cable on Neighboring	g Drums (m)		Contact Patch Area (m^2) unit lengt	th	3.:		Contact Patch Area (m^2) unit length	2.06E-03			
Drums Per Car/Container Vertical (#)			Force Constraint				Force Constraint	700			
Drums Per Car/Container Horizontal (#)			Side Wall Pressure from Comb (Pa)		1.9		Side Wall Pressure from Comb (Pa)	3.39E+05			
Total Drums Per Car/Container (#)			Torque on Cable @ Cable Center (N	N*m)			Torque on Cable @ Cable Center (N*m)	34.9			
Clearance Between Drum and Walls (m)			Internal Torque Constraint (N*m)				Internal Torque Constraint (N*m)	34.89			
Cable Length per Car/Container (m)			Max dPhi / dx (Degrees/m) from Re	olling			dPhi / dx (Degrees/m) from Rolling	1.41E-05			
Degassing Time (hrs)			Max Stress from Twist (Pa)		1.9	5E+04	Max Stress from Twist (Pa)	4.26E+03			
Cable Production Speed Goal (m/hour)		80									
Number of Cars/Containers (#)			Max Axial Stress Total (Pa)				Max Axial Stress Total (Pa)	5.66E+07			
Length of Degassing Section of the Train	(m)	339.2	Max Radial Stress Total (Pa)				Max Radial Stress Total (Pa)	9.91E+05			
			Max Circumferential Stress Total (P	Pa)	1.9		Max Circumferential Stress Total (Pa)	4.26E+03			
			Safety Factor				Safety Factor	2			
			Von Mises at Danger Point (Pa)		1.6		Von Mises at Danger Point (Pa)	7.93E+07			
			Good for Static Case?				Good for Static Case?	YES			
			Von Mises at Comb/Cable Contact ((Pa)	1.6		Von Mises at Comb/Cable Contact (Pa)	7.98E+07			
Continuous Comb		Discrete Com	Good for Static Case?			Discre	Good for Static Case?	YES			
		0127 Thickness (m)					of the Rollers (m)	0.0141			
Largest Expected Cable OD (Gap) (m)		.125 Largest Expec					kimate Largest Expected Cable OD (m)	0.125			
Length of Drum (m)		.286 Angle (Degree					of Drums Flange-to-Flange (m)	2.286			
Revolutions		6.51 Number of Co					er of Roller Rows	4			
Angle (Degrees)		.874 Circumferenti					er of Revolutions	14			
Normal Force on Comb (N/m)						(degrees)	0.971				
Delta Deformation of Insulation (m)		8 Length of Flat Section (m) 7 Normal Force on Comb (N/m)				Acting on Each Roller (N)	1.58E+03				
Strain			ation of Insulation (m)				Deformation @ Contact (m)	4.62E-04			
Contact Patch Area (m^2) per unit length		E-04 Strain	ation of mathation (m)	0.0244 S			Selonnation @ contact (m)	0.0142			
Force Constraint			Area (m^2) unit length	C			al Contact Patch Area (m)	8.52E-05			
Side Wall Pressure from Drum (Pa)		+06 Force Constra					Constraint (N)	1.58E+03			
			Side Wall Pressure from Comb (Pa)				re on Insulation (Pa)	1.85E+07			
			Fin Attachment Good? (FEA)				Attachment Good? (FEA)	Good!			
			Fin-Cable Cont. (Pa)	6			ises at Roller-Cable Cont. (Pa)	7.07E+07			
		Safety Factor			2.88 Saf			2.83			
			f Fin Sufficiently Long?				Radius Sufficiently Large?	YES			
			TT III Sufficiently Dong.		120						
		Worst Case P	recaution - Fin Terminal Radius		Pitch (m)	0.153			
			Radius at the End of Fin (m)				etween Bars (m)	0.0383			
			Force from Friction in Jamming (N)			698 Drum Length (m)					
			ation of Insulation (m)				Length Constraint	2.286 2.286			
		Strain	(11)		0.0123			2.250			
			Area (m^2) unit length	4	1.35E-05						
		Force Constra			698						
			ssure from Comb End (Pa)	1	1.60E+07						
			Von Mises at Fin-Cable Cont. (Pa)			7.14E+07					
		Safety Factor					2.80				
			ius of Fin Sufficiently Large?	YES							

Lifetime Costing of a System Produced by the Cable Train

HVDC Trackside UGC Characteristics		Lifetime Operation and Maintenance Costs of Trackside UGC (OM)	/
Transmission line route length, L (km)	350		0.1%
Transmission line voltage rating, V (kV)	660		29,848,231
Transmission line power capacity, P (GW)	4	OM (\$)	29,848,231
Trench width, w (m)	2.0	Lifetime Energy Loss Costs of Trackside UGC (E)	
Trench depth, d (m)	1.5	Circuit loading factor (CLF) of transmission system, <i>clf</i> [26], [30]	35%
Concrete slipform and precast thickness, t (m)	0.1	Short run marginal cost (SRMC) of generation, <i>srmc</i> (\$/MWh) [17]	45
Cable outer diameter, OD (m)	0.2	Resistive energy losses over lifetime of trackside UGC system, <i>kilocost_resistance</i> (\$/km)	41,831
Number of cable splices, N	-	Converter energy losses as a percentage of power [17] Converter energy losses over lifetime of trackside UGC system, <i>cost_convert_losses</i> (\$)	182 082 842
System Lifetime, <i>lifetime</i> (years)	40	Total lifetime energy losses over lifetime of trackside UGC system, cost_convert_losses (\$) Total lifetime energy losses of trackside UGC system, total_energy_losses (\$)	183,983,842 198,624,811.03
Discount Rate, rr	5%	⁶ Long run marginal cost (LRMC) of generation, <i>Irmc</i> (\$/MWh) [17]	198,624,811.03
HVDC Trackside UGC Produced by Cable Train - Capital Costs, (I)		Loss load factor (LLF), <i>llf</i> [17]	39%
Capital cost of the full Cable Train, <i>CT_Capex</i> (\$)	61,150,000	Peak power losses (PPL), cost of power required to replace losses, <i>ppl</i> (MWh)	271,057
Lifetime of the Cable Train in number of projects completed, CT_ <i>lifetime_projects</i>		Lifetime power losses, cost_power_losses (\$)	232,554,515
Preparatory work cost, cost_prep_work (\$)		E (\$)	431,179,326
Termination and converter station cost, <i>cost_converter</i> (\$) [17], [28]	700.000,000	Decomissioning and End-of-Life Costs of Trackside UGC (D)	· · · · · · · · · · · · · · · · · · ·
Contingency added to historical submarine cable manufacturing cost [17]	10%	Decomissioning costs as a percentage of total build cost, percent_decomissioning [26]	5%
Cable raw material and production cost for bipole, <i>kilocost_cable</i> (\$/km) [17]	2,970,000		17,720,694
Total cable cost for entire route, <i>cost_cable</i> (\$)	1,039,500,000	Territorial Cost of Trackside UGC (T)	
Equipment cost, cost_equipment (\$)	1,739,500,000	Trench width, w (m)	2.0
Cable Train raw material inventory in equivalent cable distance, <i>CT_inventory</i> (km)	1,735,500,000	Land cost for "noncore, non-metro, non-micro, land without a town of 2,500," <i>cost_land</i> (\$/acre) [31]	1,655
Total raw material shipping distance during project, mat_ <i>transport_dist</i> (km)	4,900	-Kilometric territorial cost, kilocost_territory (\$/km)	817.92
External, unpriced cost to ship cable raw materials by rail, cost_railroad_ship (\$/ton-km) [29]	0.005	1 (<i>Ş</i>)	286,271
Cable weight per meter, <i>cable_weight</i> (kg/m)		Lijetime cost oj kundom kepairs jor Trackside OGC, (k)	
Total cost of cable raw material delivery during project build, <i>cost_mat_shipping</i> (\$)		Historical failure rate, <i>hfr</i> (/100 km-year) [32] Percent of historical failures attributable to joints, <i>failures_joints</i> [8]	0.3
Number of skilled workers required for cable installation, <i>workers_req</i>		Percent of historical failures attributable to joints, <i>failures_joints</i> [8] New failure rate for Trackside UGC system without joints, <i>nfr</i> (/100 km-year)	37.1% 0.19
Cable Train rate of cable production, <i>CT_rate</i> (m/hr)		Cable repair cost, cost_random_repair (\$/event)	2,970,000
Labor cost for skilled workers performing cable installation, <i>hourly_wage</i> (\$/hr)		R (\$)	33,658,174.19
			33,030,174,13
Cable installation cost, kilo <i>cost_installation</i> (\$/km)	1,555,556		3,506,776,436
Trenching cost, kilo <i>cost_trenching</i> (\$/km) [25]	23,000	4	
Slip-forming cost for duct-structure, kilo <i>cost_slipform</i> (\$/km) [25]	74,000		
Precast cover cost, kilocost_precast (\$/km) [25]	187,000		
Fuel costs for all machines, kilo <i>cost_fuel</i> (\$/km)	30,000		
Construction contingency as a percentage of base construction cost, <i>build_contingency</i> [17]	15%		
Construction cost, kilo <i>cost_construction</i> (\$/km)	2,150,035.09		
Total Construction Cost, construction_cost_total (\$)	752,512,283		
Total Build Cost, total_build_cost (\$)	2,495,069,782.73		
Planning and engineering cost as a percentage of total construction cost, <i>percent_planning</i> [17]	20%		
Planning and engineering cost, cost_planning (\$)	499,013,957		
l (\$)	2,994,083,739	1	


lagray@mit.edu

MIT Precision Engineering Research Group 2018

Lifetime Cost vs. Route Distance for HVDC Trackside UGC System Produced by the Cable Train (NPV)

	14,000,000,000																
	12,000,000,000																
	10,000,000,000																
	8,000,000,000																
	6,000,000,000											-					
	4,000,000,000								-								
	2,000,000,000																
	-																
		0	100	200	300	400	500	600 R(700 oute Dista	800 nce (km)	900	1000	1100	1200	1300	1400	1500
								1.0									

Cable Train Converter Stations Cable Construction Planning Operation and Maintenance Energy Loss Decomissioning Territory Random Repair

All aboard the Cable Train!

- A pre-competitive consortium?
- More detailed case studies?
- Does the degassing car have other applications?
- What do you want to see from us?
- Anything we've overlooked?

MIT undergraduate thesis available.

Please play with our spreadsheets! \rightarrow lagray@mit.edu