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SUMMARY 

 
We introduce a statistical approach to incorporating high dimensional, high resolution remote 

monitoring system measurements into a predictive model of the remaining useful life of transformers. 

Popular tools for survival analysis, such as the Kaplan-Meier estimator and the Cox proportional 

hazards model, cannot easily incorporate time-series data or model degradation over time. In contrast, 

our model computes a statistical summary of all historical measurements and uses that summary to 

predict the risk of future failure, enabling robust estimates of remaining useful life and probability of 

failure in a given year.  We scale to very large data sets by using a combination of feature extraction, 

data compression, convex optimization, and parametric models.  We demonstrate the utility of our 

approach using historical operating data from the Con Edison network transformer fleet. Our case 

study covers the approximately three thousand network transformers on the island of Manhattan, many 

of which have instrumentation measuring load, temperatures, and oil level, among other variables. We 

demonstrate our approach using years of network transformer sensor data across thousands of network 

transformers to build a model capable of predicting the remaining useful life of each network 

transformer in the Con Edison fleet. 
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Introduction 

 

Con Edison maintains a fleet of approximately 27,000 network transformers to distribute power 

throughout the city of New York. Though transformers are generally highly reliable, across a fleet of this 

size unexpected (and sometimes catastrophic) failures are almost certain to occur each year. These 

failures1 are expensive, both in terms of downtime, manpower, and equipment cost—and some of that 

cost could be avoided with a better understanding of when a transformer was likely to fail.  

 

Better understanding when or how an asset will fail creates business value across many asset classes, 

network transformers included. First, preemptive maintenance or removal can reduce in-service failures, 

avoiding unplanned downtime, premature asset loss, negative safety impact, and expensive collateral 

damage. Second, accurate estimates of remaining useful life prevents premature replacement of an asset, 

reducing amortized capital expenses. Third, estimating failure probabilities allows for optimized field 

force strategies, providing a higher “reliability return” for each inspection. Finally, understanding what 

assets will fail in an upcoming budget cycle ensures that there is adequate lead time for replacement, 

enhancing inventory management and procurement. 

 

Existing strategies for preventing in-service failures rely heavily on operator experience and or on ad hoc 

heuristic estimates. For example, a common strategy relies on subject matter experts to review operating 

data, inspection reports, and asset metadata, such as the transformer manufacturer and install date. This is 

labor-intensive; with tens of thousands of transformers, the expert may not have time to analyze each 

transformer in detail. To improve productivity, operators may rely on threshold alarms to prioritize assets. 

If, say, dissolved gas levels or rates of change exceed a threshold, a transformer may be flagged for 

attention and preemptively removed from service. Defining these thresholds is challenging: if the 

thresholds are set too high, critical issues will go unexamined. If they are set too low, experts will be 

unable to investigate each alarm. 

 

To make informed decisions to inspect, repair, or replace an asset, experts rely on heuristics derived from 

their experience. New methods try to capture some of this expert knowledge by coding asset health 

indices (AHI). Typically, these indices are linear combinations of observables, often scaled as a 

percentage. The index, while useful for rank ordering assets for replacement or inspection, are difficult to 

interpret: what does it mean to be 85% healthy? Furthermore, there is no established AHI standard or 

consistency in definition, and an unclear relation between an AHI and failure probability. We overcome 

these limitations by leveraging a recent innovation in survival analysis, latent variable hazard modeling, 

to model both phenomena that lead to an instantaneous increase in the risk of failure, such as overloading, 

and phenomena that degrade the long-term health of the asset, such as corrosion.2 By using statistical 

tools to derive measures of asset health, we can make principled, interpretable, and verifiable estimates of 

useful quantities like remaining useful life or probability of survival until some future time. Moreover, 

unlike conventional health indices, our estimates improve as we collect more training data, allowing us to 

discover connections and patterns beyond what the human eye can discern. In the next section, we 

provide an overview of survival analysis and describe our model in detail; in the following section, we 

describe a case study with the Con Edison network transformer fleet. 

 

 

 

 

                                                
1 Failures here are restricted in definition to in-service failures (as opposed to pre-emptive removals). 
2 See Moghaddass & Rudin (2015) for a more thorough review. 

 



 

 

 

2. Survival Analysis 

 

2.1   Overview 

 

We wish to predict the risk of failure across a fleet of transformers. If transformer n was installed at date  
��,� and failed at date ��,�, we say it has a lifetime �� � ��,� � ��,�. The objective of survival analysis is to 

understand the distribution over the lifetime of a transformer, given static metadata (transformer rating, 

manufacturer, etc.) as well as operational data (such as temperature and loading). In the remainder of this 

section, we first introduce a useful statistical tool—the hazard function—which we will use to model the 

distribution over possible lifetimes of a given asset. We then describe the limitations of conventional 

approaches for estimating the hazard function, and finally we will describe the latent variable model for 

estimating the hazard function, which overcomes many of these limitations.  

 

2.2   The hazard function 

 

We may be interested in a variety of statistics related to the lifetime �� of transformer n. For example, we 

may wish to know the expected remaining useful life 	�
�� � �
��|�� � ��; this is the average age at which 

the transformer is expected to fail, given that it has been in service for t days. This quantity generalizes the 

mean time between failures by accounting for the operational history of the transformer. We can also 

estimate the uncertainty of the expected lifetime. 

 

Alternatively, we may wish to understand the probability 
�� � �� � ��|�� � ��	that a given transformer n 

fails in a specific time window (i.e. between ��  and ��), given that it has been in service for t days. We 

could use this to prioritize maintenance on those transformers most likely to fail within the next month. 

Additionally, this probability could be used for purchasing decisions by estimating the fraction of 

transformers that will fail in the next year. In addition, from this probability, we can derive statistics like 

the survival function, �
�, ��� � Pr	
�� � �
�|�� � ��,	the probability that a transformer remains in service for 

t’ days given that it has survived for t days. 

 

It turns out that these and other statistics can be captured by a function called the hazard function3 ��
��, 

which is the probability of a transformer failing during the tth day of its life, given that it remained in 

service until day t:  

 
We can derive the expected lifetime from the hazard function: 

 

 
 

We can also derive the survival function or failure probability in a given period: 

 

                                                
3 Formally, the hazard function is a continuous function of time λn(t) representing the density of failures at time t; 

the probability of failure within a given time period from t0 to t1 is given by integrating the hazard function from t0 to 

t1. We use a discrete model for didactic clarity. 



 

 

 

 
In fact, the hazard function ��
�� is sufficient to calculate any statistic derived from the lifetime of an 

asset. Unlike derived statistics, however, the hazard function allows us to use both positive information 

(the knowledge that a transformer failed at age ��) and negative information (the knowledge that it did not 

fail before time ��) independently. This in turn makes it easier to tease out the impact of a particular time 

series measurement on the hazard, and thus on the remaining useful life. In the following sections, we will 

describe several conventional ways of estimating the hazard function from data and discuss the limitations 

of each. 

 

There are many ways to model the hazard function. The simplest is to assume it is constant, leading to an 

exponential survival function: 

 

 
There are a variety of parametric models that improve upon the constant-hazard model, such as the 

Weibull or log-normal models; the Weibull model assumes the hazard is a polynomial: 

 

 
Which gives an implied survival distribution of: 

 

 
Although these simple parametric models are capable of estimating the distribution over lifetimes for a 

population of transformers, they cannot account for the idiosyncrasies of an individual transformer, nor 

can they easily account for differences in the operating histories of individual transformers. Often we 

have access to information like a transformer's manufacturer or rating, and this information should 

influence its expected lifetime. 

 

Many authors have explored using time-series data for failure analysis. For example, the proportional 

hazards model developed by Cox (1972) was extended to incorporate time-dependent information by 

Fisher & Lin (1999).  This class of models is effective for estimating the hazard function and the impact 

of observations on short term failure risk, but cannot model the long-term impact of equipment 

degradation, as it does not incorporate the impact of past observations on the future hazard estimates. 

Suppose we observe a transformer overloaded at time t and the model predicts the transformer is more 

likely to fail when overloaded. If the transformer survives the overloading, the Cox model assumes that 

overloading has no further impact on the expected lifetime. As the operational history grows longer, our 

understanding of failure risk should change; for example, an inspection report of corrosion should 

permanently increase the risk of failure and decrease the expected lifetime. 

 

Models that explicitly include degradation often assume that the observed covariates have a direct 

relationship to degradation state, typically with additive random noise [e.g. Kharoufeh & Cox (2005), 



 

 

 

Zhou, Serban & Lin (2011)]. A third class of models assume that the degradation state is unobservable, 

but that the time-varying covariates indirectly reflect the degradation state over time. The degradation 

state can then be inferred using well-known approaches such as hidden or semi-hidden Markov models. 

 

2.3   The latent variable model 

 

The latent variable model introduced by Moghaddass and Rudin (2015) computes a summary of the 

impact of past observations. Additionally, the model estimates instantaneous and temporary changes to 

the risk of failure due to recent observations. Although the most likely parameters for this model cannot 

be found explicitly as they can in Cox-like models, we can find them efficiently by solving a convex 

optimization problem. 

 

We assume that we have a body of historical records for many transformers, where the record for 

transformer n is a sequence �� � ���,�}of measurements such as average load or temperature in a given 

period t. We also assume we have the observed lifetime ��	of the transformer. 

 

The latent variable hazard model is defined by a vector of parameters θ and is given by: 

 

 
Here, ��
��is a base hazard rate computed from the distribution of failure times across all units. This is 

scaled by a factor derived from the operational history of the transformer, as represented by the sequence 

�� � ���,�}. In this work, we assume the base hazard rate is given by the Weibull model described in the 

previous section. 

 

The relationship between the observed data and the hazard rate is encoded by the weights θ1 and θ2. The 

form of �
��	is chosen to allow us to model factors that represent both a short-term failure risk and a long-

term health degradation. �� models the relationship between the measurements on day t and the risk of 

failure on day t. For example, a transformer is more likely to fail under heavy load than when de-

energized. In contrast, �� models the relationship between failure risk on day t and all measurements prior 

to day t. For example, if we observe an unexpected drop in oil pressure or observe main tank corrosion on 

any day before day t, then the risk of failure on day t will increase. 

 

Obtaining acceptable values for the parameters weights �� and �� by hand-tuning or by experiment would 

be difficult, as these values are not easily interpretable. Instead, we use optimization to find the most 

likely values given our collection of records  � �!�, �� , ��". The likelihood of a set of parameters is 

simply the probability of observing the measurements we recorded, and is given by: 

 

 
Finding the parameters that maximize this function is a straightforward optimization problem4 and can be 

solved using a variety of algorithms, such as gradient descent. We discuss the details of our method for 

solving this optimization problem in the next section. 

 

2.4  Using incomplete data 

 

                                                
4 Specifically, the objective function is shown to be log-convex in Moghaddass and Rudin (2015). 



 

 

 

In order to evaluate the hazard at time t, our model requires access to all observations up through time t. If 

t is a time in the future, this presents a problem. We do not know the future operating data. If we did, 

prognostics would be easy! In order to make predictions about the expected remaining useful life or the 

probability of survival until some point in the future, we must be able to predict the hazard without access 

to these future observations.  

 

This problem is not limited to prognostication and prediction; even our records of the past operating 

history of each transformer are often incomplete. Many transformers have been in service since long 

before remote monitoring was available; sensors are retrofitted long after a transformer is put into service. 

Communication errors and electromechanical failures sometimes prevent data from being collected, and 

collected data may be lost or rendered inaccessible within an organization for a variety of reasons. In 

practice, a useful model must be able to make predictions using incomplete data.  

 

We deal with this challenge by learning a fixed, constant risk with which we replace any missing data. 

This allows the model to approximate the expected hazard an observation if that observation is not 

available. Concretely, we replace any missing data with a fixed, constant value; this value can be set to 

the average of the available observations or can be estimated as part of the optimization problem. This 

allows us both to forecast into the future, and to address imperfect and incomplete historical data. 

 

3. Case Study: Con Edison 

 

3.1   Overview 

 

Con Edison operates approximately 27,000 network transformers throughout the service territory. These 

network transformers are responsible for delivering reliable power to over three million customers 

throughout New York City and Westchester County. In an effort to reduce the number of in-service failures, 

a remote monitoring system was deployed to capture sensor data from a subset of the fleet for which the 

entire lifetime was observed. Data monitored includes loading, main tank pressure, temperature, and oil 

level. We restrict our analysis to an analytic sample of 243 transformers for which the installation and 

failure time of the asset was observed and for which remote monitoring system (RMS) data was available. 

 

The project objective is to estimate the probability that each transformer will be removed from service 

before a given date. By estimating the hazard and survival functions of each asset, there is an opportunity 

to reduce in-service failures, enhance field force productivity, and augment procurement decisions. 

 

3.2   Data 

 

We test the applicability of the latent state hazard model using RMS data. The data consists of observations 

recorded at a frequency of approximately every ten minutes of variables such as transformer load, voltage, 

oil level, and temperature. In order to make estimating a survival model computationally tractable, we 

extract 127 summary statistics from the raw RMS data, calculated at a twelve-hour interval. The extracted  

 



 

 

 

 
Figure 1. Estimating the base hazard rate from observed transformer lifetimes using the Weibull distribution 

(n = 243). 

 

features capture information such as raw variable means, medians, and correlations within the twelve-hour 

interval. 

 

3.3   Methods 

 

To construct a latent state hazard model, we first estimate the base hazard rate �� which captures average 

failure risk as a function of transformer age across the fleet. The base hazard rate is obtained by fitting the 

parametric Weibull model using maximum likelihood estimation, as shown in Figure 1. As the figure above 

shows, this model fit corresponds to a monotonically increasing hazard function, consistent with failure 

probability increasing with transformer age. The probability density on the vertical axis represents the 

predicted probability of transformer failure for any given lifetime between zero and 60 years. 

 

3.4  Accounting for missing data 

 

RMS data is often incomplete, due in part to the relatively recent introduction of the capability into the 

fleet. Therefore, many instances of missing data result when aggregating raw data into twelve-hour intervals 

via feature extraction. We first standardize the time series covariates by subtracting the mean and dividing 

by the standard deviation of each variable. Next, we fill all missing data with zero values, which corresponds 

to the mean in our newly standardized data. Filling missing values with the mean is roughly equivalent to 

assuming steady state machine operation. More sophisticated methods for dealing with missing values are 

a high priority for future research. 

 

3.5  Parameter optimization 

 

To optimize the parameters of the latent variable model, we used the L-BFGS-B optimization algorithm 

developed by Zhu, Byrd, Lu, & Nocedal (1997) to maximize likelihood (as described in subsection 2.3). 

One benefit of the latent variable survival model is that the likelihood function can be computed as a  



 

 

 

 
Figure 2. Components µ (latent degradation) and g (transient hazard) of estimated hazard function and 

corresponding survival function for two transformers in the validation set. 

 

function of the observed data, meaning that standard optimization techniques can be applied to find the 

values of �� and ��. To prevent overfitting, we also include L2 regularization [Hoerl & Kennard (2005)] in  

our optimization process. Regularization provides a way to explicitly penalize complex models and 

improves generalization performance on unseen data. 

 

3.6  Validation and evaluation criteria 

 

While maximum likelihood is a convenient method to determine the optimal values of the parameters of 

our model, our primary goal is to achieve high accuracy when predicting remaining useful life and failure 

probabilities. We selected metrics based on considerations of what would be most practically useful for 

prioritizing maintenance and minimizing in-service failure rates. After fitting our model on observed 

training data, we calculate these metrics on held-out validation data to get an unbiased measure of model 

performance. 

 

As illustrated in subsection 3.7, our model is able to identify subtle signals indicating proximity to failure, 

using only RMS data up until the current period. This enables real-time renderings of the hazard and 

survival function. In the following section, we present such a method to predict failure at a one- and two-

year horizon. Our evaluation of model accuracy is summarized through precision, the percent of predicted 

failures that actually resulted in failures, and recall, the percent of actual failures that were correctly 

predicted. The model allows the user to tune the failure prediction framework to their specifications, based 

on their relative aversion to false positives (when failure is predicted by the model, but no failure occurs) 

and false negatives (a failure occurs, but was not predicted by the model). 

 

3.7  Results 

 

After training our model on 125 historical transformer records, we validated its performance on 20 test 

transformers. By plotting the hazard and survival functions for several of the test transformers, we can see  



 

 

 

 
Figure 3. An illustration of estimating the survival function by multiplying base hazard and individual base 

hazard for an example transformer in the validation set. 

 

clear patterns in the data indicating an upcoming failure. These are reflected intuitively as a sharp drop in 

the corresponding survival function. More concretely, our failure prediction classification model achieved  

a precision of 0.73 and recall of 0.40 when forecasting transformer failures at a time horizon of one year, 

and a precision of 0.57 and a recall of 0.65 at a two-year horizon. 

 

As described in section 2, the latent variable survival model consists of both a degradation term µ and a 

transient hazard term g. The sum of these components, together with the base hazard, provides the hazard 

function (probability of failure at each time t, given that failure has not yet occurred) from which we derive 

the survival function (probability of the transformer remaining in service given that it has lived until time 

t). Figure 2 illustrates the components of the hazard function and how they inform both the hazard and the 

survival function. The plots of µ, g, the hazard function, and the survival function are shown for two 

transformers in the validation set. For both of these transformers, there is a significant disturbance in the 

hazard function during the last two years of their operation, suggesting an imminent in-service failure. 

 

Once the transformer-specific hazard function is constructed from the latent degradation term and the 

transient hazard term, it is multiplied by the base hazard rate as described in the Methods section (see Figure 

1) This ensures the hazard function increases over time, even during periods with missing RMS data. Figure 

3 shows this process for a transformer in the validation set. This transformer showed signs of increasing 

failure potential almost five years before it failed in-service. 

 

For an engineer or maintenance worker, it would be beneficial to understand the underlying causes of 

failure. To this end, we identified features that took on unusual values (at least two standard deviations from 

the mean) during and just before the period when the hazard function and the degradation function µ first 



 

 

 

 
Figure 4. Plots of time series covariates with unusually large deviations from the mean during large spikes in 

the hazard function (bottom left) and the latent degradation term (top left) for an example validation 

transformer. Unusual fluctuations of voltage (top right) accompany the first large increase in the degradation 

component µ. In contrast, the spikes in the overall hazard function are accompanied by irregular values of 

transformer temperature measured at the top of the tank (bottom right). It appears that unusual covariate 

values are manifested first through the degradation term µ before being accounted for by the transient hazard 

term g and the overall hazard function. 

 

increased dramatically. The top panel of Figure 4 shows the individual hazard function for a validation 

transformer along with several of the variables that were unusually high during the period when the 

individual hazard function began to spike. The bottom panel shows an analogous plot for the degradation 

function associated with the same transformer, which begins to increase before any significant change in 

the hazard function occurs. 

 

The signs of increasing failure probability are manifest in the hazard and survival functions. We used our 

training data to compute estimated failure probabilities at both the one- and two-year horizon, compared it 

to the ground truth (i.e., whether the transformer was in fact removed before the query date) and chose the 

classification threshold that minimized the number of incorrectly classified transformers. We then 

computed one- and two-year failure probabilities on the transformers in the validation set and used the 

threshold from training to implement our classification rule as would have to be done in practice for 

machines that have not yet failed. 

 

Figure 5 shows the receiver operating characteristic (ROC) curves of failure predictions at both a one- and 

two-year horizon. The curves illustrate the tradeoff between decreasing false positives at the expense of 

increasing false negatives. A perfect classifier achieves an AUC score (area under the ROC curve) of 1. 

Both our classifiers achieve scores of 0.92 on the validation data. 

 

 



 

 

 

 
Figure 5. Receiver Operating Characteristic (ROC) curves for failure predictions at one- and two-year 

frequencies. The curve traces out the trade-off between the rate of false positives and true positives as the 

probability threshold for classification is increased. 

 

 

4. Conclusions 

 

We demonstrate the applicability of the latent variable survival model to 243 network transformers 

installed throughout Manhattan. This required first extracting time series features from the observed data, 

and accounting for missing data. We optimized the parameters of our model using 125 transformers and 

evaluated the performance on 20 validation transformers. Graphical representations of the hazard and 

survival function for many of the test transformers reveal periods of high transformer stress that anticipate 

failures before they occur. We used this preemptive signal of impending failure to develop a failure 

prediction model at both a one- and two-year time horizon, which achieved precision and recall scores of 

0.73 and 0.4 (one-year horizon) and 0.57 and 0.65 (two-year horizon) respectively. Both the precision and 

recall of the model can be improved with more training data and enhanced feature engineering, which will 

be implemented in the next phase of the study. Additionally, incorporating transformer metadata would 

likely increase predictive accuracy. 

 

With this model and implementation, we have created a general framework for assessing network 

transformer remaining useful life and failure probability. These methods are broadly applicable and can 

be used with other asset classes (e.g. circuit breakers, substation transformers). With achievable 

improvements in feature engineering and training data volume, this model will provide sufficient 

accuracy to optimize maintenance, procurement, and inspection strategies. 
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