Dominion Energy®

Real-Time Testing of STATCOM and SVC Controllers

Rebecca Rye

Acknowledgements

Kyle Thomas

Dr. Hung-Ming Chou

Chathura Patabandi

SIEMENS

Murat Sezer
Arnold Rischer

Hezi Touaf Adam Sparacino

Power Electronic Devices in Power Systems

Solar farm

High Voltage
Direct Current
(HVDC)

Wind farm

SVC & STATCOM (for voltage regulation)

Types of Shunt Devices for Voltage Regulation

Hardware-in-the-Loop (HIL) Experiments on RTDS

Introduction to the STATCOM

Static Synchronous Compensator

A regulating device that can act as either a source or sink of reactive power using IGBTs \

Introduction to the STATCOM

Static Synchronous Compensator

A regulating device that can act as either a source or sink of reactive power

Reactive power control

- (1) Fixed Q mode / Manual mode
- (2) Voltage Control Mode

Functional Performance Tests (FPT)

- Operational behavior
- ✓ Start up and shut down
- √ V/Q characteristic
- ✓ Gain controller test
- ✓ Stability controller
- ✓ Redundancy switchover

System diagram

Mode transfer from fixed Q (FQM) to voltage control (VCM)

- (1) In fixed Q (FQM) Q reference = 0
- (2) Mode transfer
- (3) Gain of VCM controller is adjusted
- (4) Operation point in voltage control

Dynamic Performance Tests (DPT)

- Transient behavior
- ✓ Faults
- ✓ Load switching
- ✓ External transformer energization

System diagram

Dynamic performance of STATCOM in phase to phase fault

t1: Line to line fault

t2: STATCOM blocked because of undervoltage

t3 : Fault is clear STATCOM is unblocked

Introduction to the SVC

Static VAR Compensator

A device which regulates voltage by injecting or removing reactive power using:

- TCR: Thyristor Controlled Reactor
- TSC: Thyristor Switched Capacitor

Introduction to the SVC

Static VAR Compensator

A device which regulates voltage by injecting or removing reactive power

Reactive power control

- (1) Susceptance Control (Q-Mode)
- (2) Voltage Regulator (AVR)

SVC RTDS Tests

System Verification Tests

- Operation and static/dynamic characteristics
- ✓ Start up & shut down
- ✓ Protection
- ✓ V-I characteristics
- √ Faults

System diagram

SVC RTDS Tests

Performance of SVC in phase to ground fault under voltage-control mode

- t1: L-G fault applied
- t2 : SVC injects Q to increase V
- t3: Fault is clear; SVC's Q brifely increases to regulate voltage to 1 pu
- t4: SVC injects less Q as voltage is boosted to reference value

SVC RTDS Tests

Performance of SVC in phase to ground fault under susceptance-control mode

RTDS Tests – Conclusions

- 1) Real STATCOM & SVC controllers can be tested using hardware-in-the-loop technology on RTDS racks.
- Verified the functionality and operation of Dominion Energy's new controllers per the manufacturers' specifications.
- 3) Understand the controllers and able to predict the response of the controllers in various scenarios.
- 4) Further tested the functionality of the controllers by performing more protection sequences and various kinds of faults in the simple model.

Interaction of the STATCOM and SVC

Interaction Assessment of the STATCOM and SVC

Dynamic interaction - voltage recovery time during faults

Progress

- ✓ Individual simulations of the real SVC and STATCOM controllers are completed using the RTDS simulation equipment and hardware-in-the-loop functionality.
- ✓ Operational and dynamic performances of the STATCOM and the SVC are tested and meet the criteria from vendor reports.
- ✓ Using an equivalent system model of an urban area, the STATCOM and the SVC controllers are successfully included in the same simulation. No negative interactions are found between the SVC and STATCOM when in close proximity.
- ✓ All tests procedures & results obtained are documented; documentation can be used for training purposes

Future work

- (1) Build virtual STATCOM or SVC models in RTDS that emulate the real controller.
- (2) Use the virtual models to study the interactions of multiple devices in the same network.

Thank you!

Appendicies

Dominion Energy's SVC - Hardware

Using Reactive Power for Voltage Regulation

Reactive Power for Voltage Regulation

