

FEASIBILITY OF CONVERTING HVDC LCC CONVERTER STATION TO VSC STATION

By

Ram Adapa, EPRI

Ben Mehraban & Bob Attaway, AEP Pei Wang & Kerry Walker, Manitoba Hydro Narinder Dhaliwal & Robert Kohl, Trans Grid Solutions

CIGRE USNC Grid of the Future Conference Cleveland, OH, October 24, 2017

OUTLINE

➢ OBJECTIVES LCC HVDC SYSTEMS >VSC HVDC SYSTEMS ➢ COMMON EQUIPMENT DIFFERENT OPTIONS **ECONOMIC IMPACTS** ➢ CONCLUSIONS

Cigré

OBJECTIVES

Investigate Feasibility of Converting or Upgrading Existing LCC to VSC

>Two Scenarios Considered

- Back to Back LCC HVDC (AEP)
- Long Distance LCC HVDC (Manitoba Hydro)
- Provide Recommendations based on Converter Equipment Requirements & Economic Impacts

LCC EQUIPMENT

CONVERTER TRANSFORMERS THYRISTOR VALVES CONTROL AND PROTECTION SMOOTHING REACTORS VALVE COOLING SYSTEM AC AND DC FILTERS MEASURING DEVICES AUXILIARY SYSTEMS DC SWITCHGEAR

LCC CHARACTERISTICS

- REQUIRES MINIMUM EFFECTIVE SHORT CIRCUIT RATIO (ESCR) OF 2.
- REQUIRES REACTIVE POWER SUPPLY
- LOWER LOSSES COMPARED TO VSC
- CAN EASILY CLEAR DC LINE FAULTS
- > VALVE HALL SMALLER THAN VSC

REQUIRES VOLTAGE REVERSAL TO REVERSE POWER

VSC EQUIPMENT

- CONVERTER TRANSFORMERS
- IGBT VALVES
- CONTROL AND PROTECTION
- SMOOTHING REACTORS
- VALVE COOLING SYSTEM
- AC AND DC FILTERS
- MEASURING DEVICES
- > AUXILIARY SYSTEMS
- PHASE REACTORS
- CHARGING RESISTORS

Courtsey Siemens

VSC CHARACTERISTICS

- CAN OPERATE WITH VERY LOW EFFECTIVE SHORT CIRCUIT RATIO (ESCR) (<1).</p>
- CAN SUPPLY OR ABSORB REACTIVE POWER
- > HIGHER LOSSES COMPARED TO LCC
- REQUIRES SPECIAL MEASURES TO CLEAR DC LINE FAULTS
- > VALVE HALL LARGER THAN LCC
- ABILITY TO BLACK START
- POWER CAN BE REVERSED WITHOUT VOLTAGE REVERSAL

COMMON EQUIPMENT

- CONVERTER TRANSFORMERS
- > SMOOTHING REACTORS
- > VALVE COOLING SYSTEM
- > AC AND DC FILTERS
- > MEASURING DEVICES
- > AUXILIARY SYSTEMS

CONVERTER TRANSFORMERS

CAN BE USED HOWEVER THE FOLLOWING MUST BE CONSIDERED

- > TRANSFORMER CONDITION & PERFORMANCE
- USE OF EXISTING TRANSFORMERS MAY NOT RESULT IN OPTIMUM DC VOLTAGE (NEED WYE-DELTA FOR VSC BUT WYE-WYE MAY BE USED)
- > SPACE FOR PHASE REACTORS
- INTERFACE WITH THE VALVE HALL (WALL BUSHINGS ETC.)

SMOOTHING REACTORS

OLDER LCC SYSTEMS TEND TO HAVE MUCH LARGER SMOOTHING REACTORS THAN REQUIRED FOR VSC SYSTEMS

NEWER LCC SYSTEMS HAVE MUCH SMALLER SMOOTHING REACTORS WHICH MIGHT BE USEABLE FOR VSC SYSTEMS

VALVE HALL

LCC VALVE HALLS ARE MUCH COMPACT AND HAVE HIGHER HEIGHT E.G. 500MW (23m X 15m X 17m) x W x H VSC VALVE HALLS ARE LONGER AND WIDER BUT LOWER HEIGHT E.G. 500MW (46m X 35m X 12m) XWXH VALVE HALLS CANNOT BE REUSED

(Provided VSC rating is lower than LCC)

CONTROL AND PROTECTION

THE LCC VALVE CONTROL AND PROTECTION SYSTEMS CANNOT BE REUSED AS FUNCTIONAL REQUIREMENTS ARE COMPLETELY DIFFERENT FOR VSC.

BUT SIMILAR SPACE REQUIREMENTS FOR LCC & VSC

AC FILTERS

- DEPENDING ON THE DESIGN OF THE VSC CONVERTERS AC FILTERS MAY NOT BE REQUIRED
- FOR SYSTEMS THAT DO REQUIRE AC FILTERS, THE SIZE IS 10-30% OF THE POWER RATING
- THE TUNING FREQUENCIES ARE MUCH HIGHER THAN FOR LCC
- SOME AC FILTERS COULD BE MADE USEABLE FOR VSC – DEPENDS ON CASE BY CASE BASIS
- AC FILTERS COULD PROVIDE ADDITIONAL REACTIVE POWER SUPPORT

OTHER CONVERTER EQUIPMENT

DC Filters may not be needed for VSC

- DC Switchgear Some LCC switchgear can be used for VSC
- DC Measuring Equipment same for LCC and VSC
- Auxiliary Supplies– Batteries & Chargers same for LCC and VSC

DIFFERENT OPTIONS

>THREE OPTIONS CONSIDERED

> 1. BUILD GREEN FIELD NEW STATION NEAR BY AND TRANSFER OVER

> 2. BUILD NEW STATION BUT USE SOME OF THE EXISTING EQUIPMENT

> 3. DEMOLISH EXISTING STATION AND BUILD NEW STATION IN SAME LOCATION

ECONOMIC IMPACTS OPTION 1

- SHORT OUTAGE DURATION (3 TO 6 MONTHS FOR COMMISSIONING)
- EXISITING SYSTEM CONTINUES TO OPERATE DURING CONSTRUCTION
- LOWER LOSS IN REVENUE
 - REVENUE DEPENDS UPON WHOLESALE ELECTRICITY PRICES – RANGES AVERAGE \$20 / MWH TO \$40 / MWH OR HIGHER
- > HIGHER EQUIPMENT COSTS
 - CONVERTER STATION COSTS COULD BE IN THE RANGE OF \$110 / kW FOR LCC & \$125 / kW FOR VSC FOR A +/- 500 kV, 3000 MW STATION

ECONOMIC IMPACTS OPTION 2

- OUTAGE OF ADDITIONAL SEVERAL WEEKS WILL BE REQUIRED IN ADDITION TO COMMISSIONING TIME
- IF THE AUXILIARY SYSTEMS ARE TO BE REUSED SYSTEM WOULD HAVE TO SHUT DOWN EVEN EARLIER. THIS OUTAGE IS IN ADDITION TO COMMISSIONING TIME
- COST OF NEW EQUPMENT VS USING THE EXISTING EQUIPMENT SHOULD BE EVALUATED.
- ➢ TOTAL OUTAGE DURATION 6-12 MONTHS
- MEDIUM REVENUE LOSS

ECONOMIC IMPACTS OPTION 3

- SYSTEM WOULD HAVE TO BE SHUT DOWN TO CLEAR THE SITE (6-8 MONTHS)
- ADDITIONAL 28-32 MONTHS WILL BE REQUIRED TO BUILD & COMMISSION THE NEW SYSTEM.
- > TOTAL OUTAGE DURATION 34-40 MONTHS
- > HIGHER REVENUE LOSS
- MEDIUM TO HIGHER EQUIPMENT COSTS

CONCLUSIONS

- OPTION 1 IS THE ATTRACTIVE OPTION, MOST EXPENSIVE FOR EQUIPMENT BUT WITH LOW REVENUE LOSS DUE TO SHORTER OUTAGE TIME, IF ADDITIONAL SITE IS AVAILABLE NEARBY.
- OPTION 2 SHOULD BE CONSIDERED IF ADDITIONAL STATION SITE IS AVAILABLE & SOME LCC EQUIPMENT CAN BE USED.
- OPTION 3 IS THE ONLY OPTION IF ADDITIONAL SPACE IS NOT AVAILABLE. OPTION 3 WITH NEW EQUIPMENT WILL BE A BETTER CHOICE BECAUSE
 - GREATER RISK OF FORCED OUTAGES WITH OLD EQUIPMENT
 - CHALLENGES OF REMOVAL OF OLD EQUIPMENT AND INSTALLATION OF NEW EQUIPMENT IN THE SAME SPACE..
 - WARRANTY & AVAILABILITY ISSUES WITH MIXED EQUIPMENT (OLD & NEW).
- OVERALL, REVENUE LOSS AND EQUIPMENT COSTS ALSO PLAY A MAJOR ROLE IN THE FINAL DECISION