# Arc-Calc Dominion Energy

Jonathan Deverick, Derek Kou, Nicholas Skoff, Francisco Velez-Cedeno





- Personnel Safety
- Ensure PPE rated above maximum energy
- Strive for incident energy < 4 cal/cm<sup>2</sup>
- NESC Requirement





#### Assumptions

- Phase cover up will result in a Single Phaseto-Ground fault
- Open-air fault on bare conductor
- Homogeneous Line Impedance
- No fault impedance at Reach Point



IEEE – "Arc Flash Analysis Approaches for Medium-Voltage Distribution"



#### **Arc Flash Calculations Methods**

|                                                       |      | I      | ncident en | ergy, cal/cm <sup>2</sup> |       |
|-------------------------------------------------------|------|--------|------------|---------------------------|-------|
| System                                                | Arc  |        | Privette   | ;                         |       |
| voltage                                               | gap  |        | Heat       | Lee                       | IEEE  |
| (V)                                                   | (in) | ARCPRO | Flux       | Method                    | 1584  |
| Open, single-phase arc, line-to-ground voltages given |      |        |            |                           |       |
| 277                                                   | 1    | 2.86   | 1.81       | 1.9                       | 3.2   |
| 7200                                                  | 2    | 4.61   | 3.60       | 49.5                      | 5.3   |
| 14400                                                 | 4    | 7.34   | 7.11       | 99.1                      | 171.9 |
| 19940                                                 | 6    | 9.51   | 10.45      | 137.2                     | 237.2 |

IEEE – "Arc Flash Analysis Approaches for Medium-Voltage Distribution"



#### NESC 410-2 'Clothing and clothing systems' – 1.1-46 kV

| Phase to phase    |                       | 4-cal system                         | 8-cal system                         | 12-cal system                        |
|-------------------|-----------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| voltage<br>(kV)   | Fault current<br>(kA) | Maximum<br>clearing time<br>(cycles) | Maximum<br>clearing time<br>(cycles) | Maximum<br>clearing time<br>(cycles) |
| 1 <u>.1</u> to 15 | 5                     | 46.5                                 | 93.0                                 | 139.5                                |
|                   | 10                    | 18.0                                 | 36.1                                 | 54.1                                 |
|                   | 15                    | 10.0                                 | 20.1                                 | 30.1                                 |
|                   | 20                    | 6.5                                  | 13.0                                 | 19.5                                 |
| 15.1 to 25        | 5                     | 27.6                                 | 55.2                                 | 82.8                                 |
|                   | 10                    | 11.4                                 | 22.7                                 | 34.1                                 |
|                   | 15                    | 6.6                                  | 13.2                                 | 19.8                                 |
|                   | 20                    | 4.4                                  | 8.8                                  | 13.2                                 |
| 25.1 to 36        | 5                     | 20.9                                 | 41.7                                 | 62.6                                 |
|                   | 10                    | 8.8                                  | 17.6                                 | 26.5                                 |
|                   | 15                    | 5.2                                  | 10.4                                 | 15.7                                 |
|                   | 20                    | 3.5                                  | 7.1                                  | 10.6                                 |
| 36.1 to 46        | 5                     | 16.2                                 | 32.4                                 | 48.6                                 |
|                   | 10                    | 7.0                                  | 13.9                                 | 20.9                                 |
|                   | 15                    | 4.3                                  | 8.5                                  | 12.8                                 |
|                   | 20                    | 3.0                                  | 6.1                                  | 9.1                                  |



## NESC 410-2 'Clothing and clothing systems' 25.1 - 36 kV

| Fault<br>kA | Duration<br>cycles | 4 Cal System<br>(* cal/ cm <sup>2</sup> / sec) | (NESC - 2012, tbl 410-2, 34.5 kV)                             |  |  |
|-------------|--------------------|------------------------------------------------|---------------------------------------------------------------|--|--|
| 5 kA        | 20.9               | 11.5 cal/ cm <sup>2</sup> / sec                | y = 0.0663x <sup>2</sup> + 2.1459x - 0.881, R <sup>2</sup> =1 |  |  |
| 10 kA       | 8.8                | 27.3 cal/ cm <sup>2</sup> / sec                |                                                               |  |  |
| 15 kA       | 5.2                | 46.2 cal/ cm <sup>2</sup> / sec                | <b>№</b> 40 <b>№</b> 30                                       |  |  |
| 20 kA       | 3.5                | 68.6 cal/ cm <sup>2</sup> / sec                |                                                               |  |  |
|             |                    |                                                | 0 5 10 15 20 25<br>Fault Current (kA)                         |  |  |



#### **Possible energies** Very Inverse U3 Curve (PU-1000A, TD-1.0)





#### Area of Consideration with Instantaneous Operation









#### **Distributed Energy Resources**



DERs with Y-gnd/delta transformers provide zero sequence current source and thus reduce the amount of fault current that feeder relays see



Fault Current (kA)

Clearing Time (s)

Calorie/cm^2

#### **Take-Aways**

+ A method to develop equations for Arc-Flash calculations

- + Wye/ Wye-Grounded DER Step Up transformers are preferred
- + Arc-Flash values change along the circuit
- + With some basic assumptions, a micro-processor relay could clip the current to limit the output to 8 calories.



### Why we do this....



