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SUMMARY 
 

The grid is vastly complex. From engineers to executives, we work tirelessly to quantify, 

assess, and subsequently improve this incredibly important machine. Whether in the past, 

present, or future, exact modelling of physical processes in the grid is of fundamental 

importance. However, the growing complexity of the grid and its interdependencies between 

other natural and man-made systems will require a new paradigm for deriving insights into 

planning and operations. Vast amounts of data from varied and disparate sources need to be 

combined and analyzed with modern technologies and techniques.  

 

Today, we are unnecessarily limited by our inability to quickly test our hypotheses with data. 

The systems we build to collect, store, and access data and the process by which we analyze 

data (the contemporary analytics pipeline) inject inordinate delays and complications that 

often prevent analysis altogether. As a direct result, utilities are slow to develop and deploy 

new use cases and applications based on data from new sensing modalities like PMUs, 

slowing the rate at which the industry learns and evolves. When creating analytics pipelines 

for the grid of the future we have to marry policy and technology to maximize our ability to 

quickly iterate and learn from data. To facilitate this, we require a shift in philosophy to one 

where data is considered an asset just like those made of iron, steel, and copper. 
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INTRODUCTION 

 
Electric utilities, large engineering-driven organizations, have used data since their inception. 

Based on the technology available at the turn of the 20th century, data was captured by utility 

engineers traveling to the sensor’s physical location and recording monthly measurements by 

hand with pen and the inexpensive but bulky storage format of paper. With the advent of 

SCADA beginning in the 1960’s and 1970s, we evolved out of necessity into a paradigm of 

continuous data collection. Over the coming decades, the number of parameters collected and 

archived increased. However, we have witnessed over the second half of the 20th century how 

the growing complexity of the grid has far outpaced our ability to monitor it. While the 

industry has moved forward substantially, it faces an ever-growing demand for more and 

better data with radically larger volumes, higher velocities, and greater varieties than ever 

before. 

 

This revolution in the scale and use of data is being cautiously considered by the industry as it 

arises from sources both internal and external to utilities. Specifically, utilities have nearly 

5,000 dedicated Phasor Measurement Units (PMUs) active on transmission assets - a 

deployment that started over a decade ago. As the technology has improved, numerous 

manufacturers have embedded phasor measurement capabilities into devices such as digital 

relays. Dr. Edmund O. Schweitzer III, President and Chairman of the Board of Schweitzer 

Engineering Laboratories, indicated that, if one counted the number of smart relays deployed 

with phasor measurement abilities, there would be nearly 500,000 PMUs already installed on 

the grid by his company alone [1]. With smaller (and aptly named) micro-PMUs from such 

manufacturers as Power Standards Laboratories an order of magnitude less expensive than 

standard transmission PMUs, operators on the distribution side of the grid, as well as 

commercial and government organizations, are starting to deploy these sensors, which sample 

data at 60 Hz and above [2].  Data rates of this kind are one to two orders of magnitude 

beyond traditional grid data rates. Other utility deployed sensors, such as digital fault 

recorders (DFR), capture direct measurement of the AC waveforms at thousands of samples 

per second when triggered by a particular system condition. Some DFRs can even 

simultaneously serve as PMUs that continuously monitoring the grid alongside intermittent 

bursts of much higher frequency data from a captured event.  

 

Beyond traditional utility owned and operated sensors are numerous sources of data that are 

directly relevant to the reliable and economic operation of the grid. For example, some 

companies are using drones to survey vegetation density around power lines, monitor line 

sagging to estimate impedances. and inspect towers, in some cases supplying video to the 

utility. Further, there are many real-time streaming data sources that describe phenomena 

whose relationships to grid performance and operation are hard to quantify and predict with 

physics based models. These include weather data, climate data, precipitation data, lightning 

strike data, wind data, and many other sources that could be used to better monitor and 

understand the grid, a massively complex system itself that is interconnected with other 

“systems” both natural and man-made. 

 

Despite this veritable treasure trove of available data, utilities have not yet realized the full 

potential of this valuable asset. Per Ganesh Bell, the Chief Digital Officer of GE Power, “[t]he 

problem is that just 2 percent of all the terabytes and petabytes of data generated by connected 

power plants, wind farms, grids, substations and energy management systems is being 

analyzed and used today.”  While many other industries have adopted the stance that data is 
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an asset, utilities do not yet regard data the same way as they do a transmission line, 

substation, or generator. 

 

The operative question is why. Why haven’t utilities unlocked the latent value contained in 

data? There are virtually no material barriers. Storage is cheap. Memory is cheap. Computing 

is cheap. Horizontally scalable and robust data storage and analysis platforms can be built 

with open source software. From a cultural perspective, fresh graduates joining the utility 

workforce were born in the 90’s and experienced teenage life with a smartphone. To this 

group, even trivial aspects of life are quantified and no one would question the utility of data. 

To address this all-important question—why aren’t utilities using data more—this paper 

examines the contemporary data analytics pipeline used by utilities to explore, analyze, and 

understand data. 

 

 

THE CONTEMPORARY DATA PIPELINE 
 

To understand the answer to this critical question, one must examine the current state of data 

analytics efforts within utilities and how analytics is or is not accomplished. Figure 1 captures 

the ad-hoc analytics pipeline used by the industry, based on conversations with experts from a 

number of utilities. In other industries, it may be more accurate to merge multiple stages into 

a single stage or break some stages into multiple parts, or even omit the first stage. However, 

this particular representation fits the utility industry well. 

 
Figure 1- Contemporary utility ad-hoc data analytics pipeline. 

 

To analyze and subsequently learn from data, a utility engineer or analyst must walk through 

each of the steps of this process above in sequence. The time that each stage of this workflow 

consumes governs how long it takes (if ever) for utilities to leverage and learn from data. 

More directly, it determines how quickly new use cases for PMU (and other) data can emerge 

and the value that can be extracted from a massive and increasingly growing asset. 

Ultimately, it governs the rate at which utilities can evolve.  

 

Discussions with numerous transmission and distribution utilities have identified bottlenecks 

in each of these stages. These bottlenecks slow the progress through the workflow and the rate 

of iteration for analytic development, thus decreasing the speed of experimentation and 

learning. These stages and the associated bottlenecks are discussed below.  

(0) Capture - The initial stage of the pipeline is data capture. This includes both measurement 

- the periodic collection of data in which deployed sensors translate physical characteristics 

into numeric values - as well as transmission - the subsequent movement of this information 

to an often-remote system for storage and access. This step is often not included in the 

analytics pipeline as its occurrence is assumed; analysis simply cannot happen without data. 

However, this assumption does not always hold in the utility industry. Data that is only 

archived and not driving downstream applications or otherwise being consumed is data that 

has never been examined hiding unknown problems in the data capture stage. Additionally, 

because the sensors are remote, there is significant opportunity for this stage to cause the 

degradation of measurements via a number of mechanisms and materially impact the ability 
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to utilize the data [3]. This attribute further demonstrates the need to include this in our 

model. 

The successful capture of synchrophasor data requires a number of independent assumptions 

to be met. First, the PMU in question must be working and configured correctly. Second, the 

communications channel along the path to downstream systems must have sufficient 

bandwidth for the data rate being transmitted and must, of course, be functional itself. Third, 

many system architectures for PMUs contain a complex path that requires data to flow 

through numerous concentrators and other components before ultimately being 

archived.  Last, the final destination must then accept and archive the data without loss and, 

preferably, persisted with some level of replication so that a server or hard drive failure does 

not permanently destroy data. 

 

If there is a problem at any point along this path, data capture fails. In organizations that do 

not immediately examine or use captured data, errors in this phase are unlikely to be 

discovered and the root cause for those errors will persist. In experiences with over 50 

terabytes of operational PMU data, we have seen errors arise from each step of the data 

capture step described above. 

 

(1) Access - The final resting place for a large percentage of utility data is the traditional data 

historian which is often built on top of a relational database. For the analytics process to start, 

the individual in question must be able to access the data and, therefore, must be able to 

access the historian. If the individual is not an employee within the utility, access to the data 

will be virtually impossible. This fact alone serves as a significant blocker to external 

collaborators in National Laboratories and traditional universities who want to conduct 

research, test hypotheses, and develop new ideas for the utility industry. Even if the analyst or 

engineer is inside of the utility, access is not guaranteed. This is typically because the 

historian is controlled and maintained by the utility’s IT department. Traversing this internal 

bureaucracy can consume significant time, measured in days, weeks, or even months. 

 

(2) Acquisition - Once access to the historian has been granted and sufficient user privileges 

acquired, the utility engineer must query the historian for the data. As the traditional data 

historian is designed for archival purposes and not analytics, the data must be transferred to 

the engineer’s preferred computer, often a laptop or desktop. In business parlance, the data is 

transferred from a position of low value (the historian) to a location of higher value (the 

analyst’s computer). This is done over the utility’s existing internal network, often a 

bottleneck itself, before any analysis can be done. Not uncommon is to see a data export 

requiring days of time to execute failing unexpectedly, requiring the process to be restarted 

from the beginning. Extraction of time series data from monolithic, relational databases tends 

to not be performant for technical reasons even when we ignore the potential misalignment of 

incentives due to common vendor lock in strategies. 

 

In contrast, this approach differs sharply with more modern data architectures. One of the 

central tenants of Hadoop, the open source realization of Google’s map-reduce paradigm for 

distributed computing [4], was to move the computation to the data instead of moving the data 

to the computation. The pragmatic reason for this philosophy was that data is most often 

orders of magnitude larger than the program interrogating the data and bandwidth is finite, 

especially between different computers. Google’s paper was published in 2004 and, at that 

point, had been in operation internally at the company for several years. 
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The structural downsides to the common utility approach are numerous. Once the data leaves 

the historian, it creates multiple copies of the data that are no longer auditable nor trackable 

by the central system. Further, if the historian receives data out of order, the analyst’s local 

copy will likely not be updated and the resulting analysis will be on stale data and likely 

invalid.  A better data architecture would capture an immutable original version of the data 

that is then replicated. This replicated copy of the data could then be accessed and updated 

and even forked, with strict version control in place and tracking of access and location.  

 

(3) Wrangling and Cleaning - Once data has been acquired and is available for work, the data 

must be wrangled or munged, work that is the bane of data analysts and engineers 

everywhere. Data “wrangling” is the process by which raw datasets retrieved from one or 

more locations can be made more applicable and convenient for consumption by downstream 

steps in the process. Unfortunately, it is well known in the world of data science practitioners 

that the data wrangling stage can consume upwards of 80% of project time. 

 

The ingested data is cleaned and brought together, often through relational joins and/or simple 

append operations. Often times, the result of this step is a single flat table.  For cleaning, 

categorical variables are created, missing data is handled, dates are formatted and properly 

converted, among many other steps. The statistical properties of the data are checked to 

ensure that what will be used in the modeling or analysis phase is what was expected. 

 

Synchrophasors represent an unprecedented improvement in the measurement capability of a 

utility because their time synchronized, high resolution, phasor values truly measure the state 

of the system. However, synchrophasor data quality is a known problem in the industry due to 

numerous problems including issues with the communications infrastructure and improper 

sensor configurations. For each analysis effort, the engineer who pulls synchrophasor data 

must identify and address each and every data quality issue, correcting for missing data, 

corrupted timestamps, null values, repeated floating point values, and many more.  

 

(4) Analysis and Modeling - Once the data is sufficiently clean, the analyst can begin the line 

of investigation for which he or she had initiated the effort. Many efforts in this stage, such as 

testing a hypothesis, building a statistical model, or training a machine learning classifier, are 

exploratory in nature and not as predictable in outcome or required length of time to achieve 

any result, let alone the one desired. In fact, it is not uncommon that such work fails to 

disprove the null hypothesis. Analysis tasks are much closer to science than engineering and 

thus share more of the characteristics of such work. 

 

(5) Visualization, Reporting, and Results Propagation - Data analytics projects can be seen as 

an effort to construct an argument from data - a story that will compel others to take action. 

Data visualization is key to weaving a narrative for this report. Visualization summarizes and 

condenses volumes of numerical data into a picture that can be embedded into a report and 

quickly digested by the reader. For an analysis to be adopted and ultimately become a 

successful use case, the results and the code must be disseminated to a wide audience both 

within the utility in which they originated and across external organizations. The wider the 

audience the results reach, the larger an impact that analysis can make and the more value that 

can be created. 

 

For the utility industry, this exposition is often captured in Microsoft Word documents or 

PowerPoint Presentations with data visualizations getting created either in Mathworks’ 

MATLAB ™ or Microsoft Excel. The generation of these static reports is time consuming 
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and not done in an automated fashion. If the underlying analysis changes, the updates do not 

flow through to the report without user effort. Further, no common and searchable platform 

exists for the rapid propagation of these static reports. 

  

These results then get propagated internally through meetings and memos. Once appropriately 

sanitized, such findings are distributed externally via industry and government meetings, as 

papers in academic and industry publications, and in presentations and posters at conferences. 

Some conferences accept content submissions a few months before the event; other require 

submission a year or more in advance. Publishing in many academic journals can be a 

substantially longer process. 

 

(6) Moving Results to Production - Some data analysis projects seek to address a singular 

question once and the answer or result generated will never be required again. However, for 

most other analysis projects, this is not the goal. In fact, a result that is required repeatedly is 

more valuable. For analyses to be useful and truly gain traction, they must be translated from 

an ad-hoc effort run asynchronously on a laptop to running continuously on live streaming 

data on production hardware automatically. This allows the result to be experienced, 

understood, and leveraged by a far wider audience; the analysis becomes useful to all users of 

the system instead of remaining isolated in a folder on the engineer’s hard drive. 

 

We see this frequently in businesses using relational databases. Reports generated by SQL 

queries get run to summarize different aspects of the business. Some reports get run quarterly, 

some get run monthly, and some get run more frequently. In the limit as the frequency 

increases, the result is a real-time dashboard that continuously updates—moving the original 

ad-hoc report or analysis into production, potentially accessible to a much wider audience.  

For a utility-specific example application or use case we will use a simple event detection 

algorithm, one that identifies any voltage drop of a certain percentage in a defined window of 

time. PMU-consuming organizations have indicated that this is not possible with at least some 

of the data historians currently deployed. Thus, either the company that developed the 

historian adds this specific new functionality to the historian or a third party builds an 

independent application that consumes data flowing from the historian to provide event 

detection. Each option is going to require substantial resources and months of time.  

The reason that this state of affairs exists is in part due to software tooling used by the 

industry including the existing data platforms and the popular analysis packages, such as 

Mathworks’ MATLAB ™ or Microsoft Excel™.  Per the Associate Dean of the Division of 

Mathematical and Physical Sciences at the University of California at Berkeley,  

“[r]elying on Excel for important calculations is like driving drunk: no matter how carefully 

you do it, a wreck is likely.” 

 

 

THE FUNDAMENTAL PROBLEM WITH THE PIPELINE 
 

Based on the above description of the contemporary utility analytics pipeline, it should be 

clear why utilities don’t use data better; the process by which analysts and engineers learn 

from data consumes significant time and resources. Data analytics is an intrinsically iterative 

process. If the iteration rate is too slow, the emergence of successful use cases leveraging 

PMU data making it into widespread operational adoption is low.    

 



  6 

 

Walking through every stage of the pipeline can easily consume months of effort if not 

substantially longer. When one considers the full diffusion of notable results via traditional 

means, the entire process can take years.  

 

(0) Capture - Step 0 is the exception as it should not lengthen the workflow. However, if 

unsuccessful, it blocks all subsequent steps.  

 

(1) Access - Step 1, gaining data access, can take days, weeks, or even months depending on 

the utilities organizational structure and internal politics.  

 

(2) Acquisition - Step 2, acquisition, can be even more problematic. We have seen the task of 

pulling a month of data from a historian require a month of time and significant engineering 

support. Even simple data queries requesting a few seconds of data can incur 8-10 minutes of 

delay [5].  

  

(3) Wrangling and Cleaning - That data cleaning and wrangling typically consume 80% - 

95% of the time for the typical data analytics project is only exacerbated by the fact that this 

effort is repeated for each and every analytics project. The data conditioning done to the data 

is not pushed back into the historian and the cleaning and conditioning methodologies are not 

standardized.   

 

(4) Analysis and Modeling – Step 4 is not an engineering task with well-defined schedules but 

is an exploratory and iterative process that can often be open ended, requiring an unknown 

amount of time to complete.  

 

(5) Visualization, Reporting, and Results Propagation – All aspects of step 5 are time 

intensive. Generating the typically static report is a process that can consume days or weeks 

of effort while disseminating the results both internally and externally can take months or 

longer. 

 

(6) Moving to Production –There is no quick path to move a one-off analysis into an easily 

repeatable use case available to everyone given contemporary data architectures. Thus, this 

last step, even when possible, can literally take years. 

 

Totaling up the worst-case time required to traverse all of these stages could amount to years 

of time even before taking into account the successful dissemination of results or moving an 

application to production.  Exacerbating this situation further is the fact that many of the steps 

mentioned above require a human in the loop and are not easily automatable. For example, 

data is often exported from a historian using a GUI. This makes the process not easily 

reproducible as all of the actions to complete the ad-hoc analysis cannot be captured in code. 

 

By the nature of this pipeline, work is frequently duplicated. If a new analysis is performed by 

the same individual, most, if not all, of the steps above will have to be repeated. If a new 

individual wants to do the same analysis, all steps will inevitably be repeated.   

 

Crucially, there are many steps in the process where the pipeline can outright fail, blocking 

learning entirely. If PMU data was not captured correctly for the last several years, no 

analysis is possible. In some cases, often when a significant amount of data is required (such 

as all synchrophasor data for the last year), the historian simply cannot handle the request. 

Further, all of the first steps of the pipeline could be successful and generate a potentially 
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world-changing result. However, if there is no obvious path to move this analysis to 

production, the pipeline has failed.  

 

It is not difficult for engineers and analysts in the utility to observe and intuitively estimate 

the burdens of this pipeline. They know from personal experience or from the experience of 

their colleagues that the process is costly and painful. Because of this, rather than taking 

upwards of one or more years to complete and disseminate, analytics efforts often never 

happen in the first place.  

 

As discussed above, there are many reasons for the current state of affairs in the industry and 

detailing each goes far beyond the scope of the paper. However, a potential cause is suggested 

by the figure below, which casts a slightly different light on the ad-hoc analytics pipeline first 

shown in Figure 1. 

 

 
Figure 2 - Another view of the ad-hoc analytics pipeline. 

The first half of the ad-hoc analytics pipeline requires skills that fall squarely in the traditional 

power and electrical engineering disciplines. However, the back half of the pipeline is 

computer science and software engineering (and even data science), practitioners of which are 

pulled into many other industries.  

 

 

TRANSFORMING THE PIPELINE 

 

The most direct way to solve the iteration rate problem described above is to decrease the 

amount of time required by each stage of the pipeline and, in many instances, this can be 

accomplished through technology.  

 

(0) Capture - Resolving the problems in this step is trivial when taken seriously. Once the 

data being captured is widely used, feeding broadly used applications, problems with capture 

will immediately be noticed and resolved. A properly designed and monitored pipeline will 

include systems and tools that provide feedback to the pipeline to enable engineers to observe, 

diagnose, and correct problems at each stage. These upstream optimizations provide 

cascading benefits to downstream applications. A misconfiguration can be easily caught and 

fixed preventing the engineer-analyst (and downstream systems of the data platform) from 

spending unnecessary time processing corrupt data. Additionally, the signal footprint is a 

function of time – devices are retired and new ones are added frequently, especially during the 

growth phase. This is important because substantial work has been dedicated to data 

conditioning for data quality problems that wouldn’t exist if end-to-end system health was 

monitored and managed. 

 

(1) Access – this step is an internal organizational and policy issue with only a thin layer of 

technology involved. It is possible to make the data access request process more automated 
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but that is unlikely to resolve the underlying issue. A cultural shift emphasizing the value of 

ease-of-access is paramount. While not a silver-bullet, one technology consideration for this 

problem is to be able to create multiple virtual environments partitioned by customers and 

their use cases where each user can experiment and manipulate and transform the data as they 

see fit without any fear of impacting the original or archived data. 

 

(2) Acquisition – The time required to acquire the data could be completely eliminated if the 

historian were not simply a repository but an actual data platform that could enable interactive 

exploration of the data at scale in real-time and faster than real-time analysis and computation. 

Traditional acquisition also assumes that the best solution is to bring the data to the 

computation whereas, for large data sets, it makes more sense to move the computation to the 

data. This itself will be a shift in both technology as well as philosophy. 

 

(3) Wrangling and Cleaning – Synchrophasor data quality problems often arise from issues in 

the data capture and archival phases. Solving these problems makes data cleaning much 

easier. More fundamentally, data cleaning should be handled at the time of ingest by a 

predefined array of functions in a standardized form. This way, the work is done once instead 

of being repeated by each analyst touching the data. Having a standard set of PMU (or other 

sensor type) data cleaning policies would also help facilitate inter-organizational data 

exchange. However, there are some analytics in the pipeline which are designed to manage 

their own data quality issues internally and prefer raw, unrefined data.  

 

(4) Analysis and Modeling – While it may not be possible to remove all uncertainty from 

tasks that are exploratory in nature, technology can facilitate code sharing and the diffusion of 

best practices across the utility. This will help avoid duplicate projects and smaller efforts. 

Further, it would give a chance for often used code to solidify into internal modules and 

libraries.  

 

(5) Visualization, Reporting, and Results Propagation – The solution here is to use literate 

programming techniques that allow the engineer to develop the report while performing the 

analysis; the source code and the report are one and the same. This dynamic notebook could 

easily be rerun if or when the underlying data changes. Additionally, for appropriate analytics, 

periodic and event based reports can be disseminated in multiple formats such as text alerts, 

emails, and web services. 

 

(6) Moving to Production – The movement to production happens when a developed analytic 

is refined and deployed to a production system. The data platform must either provide a 

comprehensive API that allows third party applications to easily and rapidly access data or the 

platform itself must have intrinsic capabilities to run custom analyses continuously and in 

real-time. In both of these cases, the technologies used in development must parallel the ones 

used in production so that migration and configuration of analytics is as seamless as possible. 

 

Ideally, the analytics pipeline described above would not be a linear process that results in an 

isolated, single application but instead a process that represents a virtuous cycle, with each 

successful analytics project offering the entire organization (and even industry) near 

immediate improvement as shown in the diagram below. 
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Figure 3 - Idealized data analytics pipeline with global feedback loop. 

 

 

CONCLUSION 

 

The grid of the future requires a paradigm where technical and business decisions can be 

made by creating and testing hypotheses against vast amounts of data. These data sets include 

operational system data from SCADA, PMUs, and DFRs as well as externally sourced data 

such as weather data, satellite data, and many others. The foundation of this decision-making 

process is the analytics pipeline – a measurement, collection, transmission, storage, access, 

and analysis infrastructure. The analytics pipeline of today, replete with substantial 

bottlenecks, imposes an undue burden on engineers and analysts, pushing the cost of asking 

all too important questions beyond our reach.  

 

Learning is defined as “the acquisition of knowledge or skills through experience, study, or by 

being taught.” As experience is often captured as data, data analytics is truly an iterative, 

multi-step process that aims to answer key questions and to help the organization experiment 

and learn. The faster that learning occurs, the faster the organization can improve. The faster 

those results are distributed across the industry, the faster the grid can evolve. Given the 

volume and nature of the data collected by utilities one can quickly conclude that there are 

significant opportunities to dramatically improve the world’s largest (and oldest) machine as 

well as the organizations that build, maintain, and operate it. However, this capability has 

largely been under-utilized and therefore, the true value and potential has not been realized. 

 

To drive this change, we need to have a philosophy in the utility space that regards data as an 

asset in much the same way that we regard a transmission line, substation, or generator. In 

this case, the no-free-lunch theorem certainly holds true. While data is an asset that can 

provide an ROI if engaged properly, the other rules and responsibilities of assets also apply. 

In other words, utilities must concern themselves with the maintenance of data, the 

performance of their data, and the reliability of their data among other concerns. This 

philosophy manifests itself in an analytics pipeline that is designed to feedback and self-

correct, lower the cost and increase the speed of experimentation and learning, and enables 

the findings to improve both the pipeline and the systems and organizations being monitored.
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