

## COORDINATED BATTERY ENERGY STORAGE SYSTEMS SIZING FOR PHOTOVOLTAIC RAMP RATE CONTROL

Ibrahim Alsaidan, Wenzhong Gao, Amin Khodaei University of Denver USA Shay Bahramirad & Aleksi Paaso ComEd USA

#### Introduction

- The penetration of solar photovoltaic (PV) units in power systems has shown an increase in the past few years and is expected to continue growing in the near future.
- This is due to several factors:
  - The drop in solar PV technology cost
  - Advancement in power electronics and control methodologies
  - New solar PV-grid connection regulations



#### Yearly U.S. Solar Photovoltaic (PV) Installation

Source: Solar Energy Industries Association, "US Solar Market Insight: 2017 Year in Review," September 2017

#### Introduction

- The ramp rate of the solar PV power sent to the grid must be controlled to ensure grid stability.
- Various methods have been discussed to solve the solar PV power variation issue and to control the ramp rate of the power injected to the grid:
  - voltage regulating control
  - active power reserve
  - geographical dispersion
  - energy storage integration
- Energy storage can be used to perform multiple applications (e.g., energy arbitrage, ramp rate control, and regulation services).
- Among the various available energy storage technologies, battery energy storage system (BESS) stands out to be the most mature technology that can be used for solar PV ramp rate control.

#### Solar PV Ramp Rate Analysis

- Solar PV ramp rates can be categorized into:
  - Small ramp rate (typical solar PV power profile)
  - Large ramp rate
- Unlike small ramp rate, large solar PV ramp rate rarely occur



## **BESS Installation Challenge**

- The main challenge that often faces BESS installation is the associated high investment cost.
- The BESS investment cost is strongly related to the selected technology and size.
- If one BESS is used to control the solar PV ramp rate, it will need to have both high lifecycle and high capacity.
- A BESS with such characteristics is expensive and might not be economically viable to be purchased and installed.

## Solution

- The small and large solar PV ramp rate controls are decoupled and two different BESS technologies are used to perform the PV ramp rate control.
- BESS 1 large ramp rate control
  - Low cost
  - Low lifecycle
- BESS 2 small ramp rate control
  - High cost
  - High lifecycle



## Objective

- A coordinated BESS sizing method is proposed to determine the optimal size for both BESS units
  - Minimize the total BESS investment cost
  - Satisfy the grid operator ramp rate limit
- The proposed model is formulated using Mixed Integer Linear Programming (MIP) and solved in GAMS.



#### **Case Study**

- The proposed coordinated BESS sizing model is tested on a 1 MW solar PV unit.
- Two BESS technologies are used to control the solar PV ramp rate

| BESS<br>Technology | Power Rating<br>Cost (\$/kW) | Energy Rating<br>Cost (\$/kWh) | Depth of<br>Discharge<br>(%) | Round Trip<br>Efficiency (%) |
|--------------------|------------------------------|--------------------------------|------------------------------|------------------------------|
| Lead acid          | 600                          | 400                            | 70                           | 75                           |
| Li-ion             | 1300                         | 800                            | 90                           | 95                           |

| BESS Technology | Optimal Power<br>Rating (KW) | Optimal Energy<br>Rating (KWh) | Investment Cost<br>(\$/year) |
|-----------------|------------------------------|--------------------------------|------------------------------|
| Lead acid       | 205                          | 96                             | 24,048.6                     |
| Li-ion          | 58                           | 10                             | 12,426.6                     |

| Ramp Rate      | No. of violations       |                    |                       |  |
|----------------|-------------------------|--------------------|-----------------------|--|
| Percentage (%) | in original Solar<br>PV | after using BESS 1 | after using BESS<br>2 |  |
| 5              | 2040                    | 1104               | 0                     |  |
| 10             | 828                     | 12                 | 0                     |  |
| 15             | 444                     | 0                  | 0                     |  |
| 20             | 228                     | 0                  | 0                     |  |

#### **Results-Obtained Power Profiles**



## Conclusion

- A coordinated sizing method was proposed in this work to determine the optimal size for two different BESS technologies that are installed to control solar PV ramp rate.
- The BESS technology with lower lifecycle and capital cost was selected to control the large solar PV ramp rate while the BESS technology with higher lifecycle and capital cost was used to control the small solar PV ramp rate.
- This way, the overall investment cost is reduced compared to using only one BESS to perform PV ramp rate control application.
- The results obtained from numerical simulations showed that the proposed method was able to determine the optimal size of both BESS technologies while at the same time satisfying the ramp rate limit imposed by the grid operator.

# Thank you Mohsen.Mahoor@du.edu