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SUMMARY 
 

Industry interest in power transformer failures and failure rates has led to much discussion of 

the actual definition of ‘failure’, and the applicability of statistics associated with published 

failure studies. It seems that the electric supply industry has a passion for condition assessment 

of assets.  Power transformers in particular, which are indexed, classified, and ranked so that 

operational planning and response for large capital intensive assets can be effective, and long 

term financial plans can be justified. This paper will look at sources of variability in the 

generation of asset health indices from available raw data, and the possibility of deriving a 

useful probability of failure from an asset health index. Variability stems from the initial 

measurement, through encoding systems to classify data, and the subsequent combination of encoded 

data to a final health index. It is possible to relate the raw data through analytics to a probability of 

failure – depending on the approach used to obtain and encode the data, and the inclusion at the outset 

of relevant and justifiable timescales. The steps for such an approach are outlined. 
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 INTRODUCTION 
 

There is growing interest in ‘asset health indices’ (AHI) in the electric supply industry. The motivation 

is often to obtain an overview of asset performance, to indicate likely candidates for strategic planning 

for repair, replacement and refurbishment (1, 2, 3). In parallel, many systems in use identify candidates 

for maintenance or short term intervention. This range of possible timescales for action can mean there 

is disappointment from a particular approach. The index may not address the requirements. One solution 

is to ensure that we have a very clear definition of the problem to be solved. We must know what 

question are we going to try to answer with a single AHI? Further, how will the AHI bring value to the 

organization? What will each number mean? Is there a relationship between the raw data, any encoding 

of that data into scaled parameters, the timescales associated with the different AHI’s, and a clear and 

auditable justification for an AHI and an action (4, 5)? If not, the resulting AHI may not perform its 

functions well. 

 

It is fairly easy to develop a system for calculation of an AHI. It is possible to generate a transformer 

AHI systems based solely on dissolved gas analysis (DGA) of the oil in each transformer. This is not a 

‘bad’ approach. In fact, it is a reasonable way to start. We can expect to have a reasonable volume of 

DGA data available, and the industry (as a whole) has studied the relationship between DGA and 

transformer condition.  

 

There should be no surprises in an AHI score. It encapsulates the data we have, and what we already 

know in terms of analyses based on standards, guides, and heuristics. The only surprises to be expected 

are those that reflect a sudden change in available data, and the consequent change in the AHI. The size 

of the change in AHI should also have a meaning for what the change represents. 

 

Practical AHI systems may take many pieces of raw data, apply numerous coding and functions to 

develop component scores, and then collate results to a final AHI. Again, this is not ‘bad’ – but has to 

be considered in terms of whether it is useful in answering a question (6). An analogy may help. If the 

tire pressure monitor in a car gives the average pressure of the 4 tires – it may be said to give an indication 

of the overall health of the 4 tires. However, tires do not usually fail ‘on average’; they fail ‘in particular’. 

An individual tire may need to be addressed with some urgency – an urgency which is lost when we 

look at the average pressure. AHI systems which weight different parameters are a form of averaging – 

any sense of urgency can be rapidly lost in the analyses. Here is  an example of a practical system where 

this occurs.  Combining and weighting data from tires, transmission, cooling, steering, engine, etc. loses 

focus on any one aspect of the car. The resulting system may not retain monotonicity. That is, the AHI 

index may seem to be ‘better’ for a transformer which is in worse condition, and requiring more urgent 

intervention. 

 

Care must be taken in developing an index: if we need a means to identify maintenance intervention in 

the short term and replacement in the longer term, we may need two different indices. The development 

of an AHI as a technical effort is not necessarily complex. However, at the onset, the development 

should include  the relationship between data, symptoms, failure modes and timescales. If the AHI is 

not based on those relationships, and retained through the analytic compilation of component scores and 

a subsequent AHI, then it will be difficult to derive any timescale for action with any degree of 

confidence – even for relative ranking purposes. 

 

DATA AND STATISTICS 
 

In making a measurement of some value, our measurement technique and measurement system will 

provide sources of both systematic and random errors. The result of the measurement is only an 

‘estimate’ of the true value (7).  Numerous measurements of the same value will provide a ‘distribution’ 

around the actual value, often in the form of a Normal (a.k.a. Gaussian) distribution, symmetrical about 

a ‘true’ value.  The spread of the distribution is characterized by the standard deviation, the confidence 

interval, and the error.  In Figure 1, a measurement of 25 units is characterized by an error of +/-10%, 
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with a confidence interval of 90%, and a resulting standard deviation of 1.52 units.  The vertical axis 

indicates the probability that the result is at a particular x-axis value. 

 

 

 
Figure 1 

Parameter Measurement with Normal Distribution 

 

 

The data in Figure 1 shows that there is uncertainty built into our measurements. Any system which 

attempts to encode the data into a scale (say 1-5 for condition), will be subject to error due to the 

precision of the original measurement. Table 1 shows possible category, or coding boundaries for the 

measurement in Figure 1. 

 

 

Table 1 

Category or Coding Limits for a 0-100 Measurement 

 

Category/Code Lower 

Limit 

Upper 

Limit 

1 0 20 

2 20 40 

3 40 60 

4 60 80 

5 80 100 

 

 

 

Overlaying the category boundaries on a new measurement, which lies near a boundary, shows the 

likelihood that the ‘true’ result is one or other of the categories, Figure 2. 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0 10 20 30 40 50 60 70 80 90 100

Single Parameter Distribution

Dist

Measurement Value = 25 Standard Dev. = 1.52Error % = 10 C.I.% = 90



  4 

 

 
Figure 2 

Parameter Measurement with Normal Distribution 

 

The resulting category – the condition code for this parameter – is almost twice as likely to be code 3 

(40-60) than code 2 (20-40).  But the encoding is not definitive, as the raw data is not definitive. 

 

As an example, consider a car tire at 28 psi. How do we relate that measurement to the probability of 

failure of the tire?  The probability of failure of the car? Without extensive experiments and many actual 

failures, our data will always be uncertain, and the relationship with a probability of failure even more 

uncertain. In Figure 3, two examples of relationships between measured parameters and failure rates are 

shown: a linear version and a logistic. The logistic is possibly more realistic, as it is bound by an upper 

limit of 100%.  

 

 
Figure 3 

Linear and Logistic Relationships for Measured Parameter and Probability of Failure 

 

But the relationship between parameter and probability of failure cannot be developed without extensive 

test results.  In the case of tire pressures, there would need to pump a lot of tires  to the appropriate 

pressure, and then failures recorded in practice. An effort to do this was undertaken for some DGA 

results. 

 

CIGRE Technical Brochure 296 (8) summarizes DGA data from oil samples taken from the bottom of 

the main tank of a population of transformers. The samples were taken ‘shortly before or after’  a fault, 

so  assumed to correspond to the fault. The timescale of ‘shortly’ is not defined. Charts were developed 

linking gas concentration and probability of failure in service, as shown in Figure 4 for acetylene 

concentrations. 
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Figure 4 

CIGRE TB 296: Acetylene Concentration and Probability of Failure (Copyright CIGRE 2006) 

 

The shape of the curve in Figure 4 is somewhat logistic – but is it expected that the probability of failure 

below concentrations of 100 ppm acetylene to be constant at about 12%?  The applicability of the results 

may be limited to the originating organization. How then, is it possible to generate data for a wide range 

of assets?  Transformers are often treated as fungible assets but are, in general, unique and predominantly 

handmade devices. They may have families, but they are not all interchangeable. 

 

CIGRE TB 642 is a transformer reliability survey covering 56 utilities in 21 countries, and including 

more than 950 known transformer failures in generation, transmission, and distribution (9). The data 

was collated and analyzed, with one note: “All populations show a low hazard rate and no distinct 

bathtub curve character”. This is interesting in that aging transformers do not seem to correlate with an 

increasing likelihood of failure. If we use age as an input to an asset health analysis, we may be 

responding more to prejudice than fact. 

 

Context is also very important (5, 10, 11, 12, 13). If the loss angle (dissipation factor or power factor) 

is measured for a transformer main winding, how is a result of 0.75% interpreted?  For some 

manufacturers, this result would be higher than expected, but within the lower 75th percentile. For 

another manufacturer, such a value may put the result in the top 5th percentile.  What are we to make of 

the distribution? We know, intuitively, that a higher power factor is an indication of insulation 

deterioration, but what does it mean probability of failure? What is the failure mode? Does our raw data 

lead to an indication of what failure mode is in operation, and how long it will take to reach culmination? 

 

There is much variability of raw data, including the distribution around a true value, the subsequent lack 

of definitiveness in encoding a parameter to a code or category, and the paucity of data linking a 

parameter or category to an actual probability of failure. We can see that any asset health index is likely 

to be far removed from any real probability. As a note, if the encoded categories do not have a timescale 

associated with them, and probability of failure within that timescale, then any subsequent analysis is 

going to be fuzzy, at best. 

 

FURTHER ANALYSIS 

 
Figure 5 shows the IEEE C57.104 condition codes for a variety of dissolved gases used in transformer 

DGA analyses (14). 
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Figure 5 

IEEE C57.104 Dissolved Gas Analysis Codes (Copyright IEEE) 

 

The codes in figure 5 are based on distribution data of multiple populations of transformers, and 

anecdotal/actual evidence of failures – to allow for increasing condition code to reflect poorer health. 

But none of the codes have any indication of what action must be taken, or how soon an action should 

be taken – apart from TDCG, which recommends resampling in given timescales. 

 

The data available for development of an AHI must be encoded so that an overall health index may be 

produced. The different codes must be calibrated. For example, data encoded as 3 for Hydrogen, must 

have the same sense of urgency as a 3 for vibration. That sense of urgency may be recorded as a timescale 

for action. The action may be different for different data sources, but the urgency must be calibrated, or 

we will find that some 3’s are more urgent than others. Combining such uncalibrated data will be 

impossible. 

 

For example, in Figure 6, multiple data sources have been collated and coded based on predefined rules. 

This gives a score for several factors. The codes are based on:  1= good and 5= bad. The individual 

factors are then combined by simple addition. 

 

 
Figure 6 

Multiple Factor Combination via Simple Addition 

 
Simple addition is a version of a weighting scheme where all of the encoded values are weighted 

identically (usually with the weight set to a value of 1). The system in Figure 6 is calibrated, so there is 

the same timescale for action for all 2’s, and a different (but consistent) timescale for all other codes.  

Which transformer in Figure 6 is most urgent? Transformer number 3 has a score of 5, the most urgent 

condition code, for one factor. The simple sum hides this fact. Normalizing the sum to a percent of a 

maximum possible score does not help the interpretation. The combination process – the weighted sum 

-- has lost the sense of urgency and, thus, the link to probability of failure. 

 

Factor Trf 1 Trf 2 Trf 3

DGA Main Tank Score 2 1 1

Dielectric Score 1 1 1

Thermal Score 2 1 1

Mechanical Score 3 4 1

Oil Score 1 1 1

DGA LTC Tank Score 3 1 5

Operational Score 2 3 3

Design/manufacturer Score 1 4 1

Subject Matter Expert Score 3 1 2

Sum 18 17 16

Normalized Sum (%) 40.0 37.8 35.6
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Using different weightings does not necessarily help with prioritization, due to the fact that we could 

have a small change in a heavily weighted score – producing the same overall effect as a large change 

in a lightly weighted score. The link between condition, ‘cause’ and resulting health score ‘effect’ is 

broken. 

 

In addition, when available data changes and a parameter value moves across a boundary, the precision 

of the measurement means that there is uncertainty, and possibly significant uncertainty, in where the 

’true’ measurement lies. The resulting code is uncertain, and the resulting health score is uncertain. 

 

There are systems which help urgent data stand out. Log scales put more emphasis on higher codes. In 

Figure 7, the linear 1-5 of the data in figure 6 is replaced with an exponential/log style score. 

 

 
 

Figure 7 

Multiple Factor Combination via Log Scale and Simple Addition 

 

The individual codes are calibrated so that all 3’s still have the same time scale for action. A score of 

100 is most urgent. The normalized sum becomes unimportant, as we are looking for any simple addition 

sum where the total exceeds 100. In such a case, a contributory score may be at 100 and, thus, most 

urgent. The system described here is roughly log3, so that three contributory scores of a particular level 

are almost equivalent to one score at the next level up. 

 

The log system retains the sense of urgency needed to indicate assets in poorer health, and is more likely 

to fail. 

 

EXAMPLE OF A LOG AHI SYSTEM IN USE 
 

There are many asset health systems that take a set of raw data, and then manipulate that data into a final 

score – without referencing failure modes or timescales. Such systems may have some relative ranking 

capability, but this is not guaranteed. The ranking may not be monotonic with the most urgent cases – 

not necessarily having the worst score. 

 

The system described here is in practical use in a utility. Figure 8 shows an extract from a table of 

transformers evaluated using a log3 scale approach, with transformer identifiers removed. The table is 

ranked by “Overall Condition – Now” 
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Figure 8 

Logarithmic approach to transformer analysis 

 

The logarithmic approach is applied to a range of factors which are grouped together: 

� Core and Windings: evaluated via dielectric, thermal, and mechanical factors 

� Oil: evaluated through ageing, contaminants. 

� Manufacturer and design 

� OLTC and other factors 

 

Note that the table in Figure 8, in reality, extends well to the right – with other factors and components 

evaluated. The initial score calculated is a ‘Now’ value for Overall Condition. In addition, each 

transformer is analyzed for likely failure modes operating and what can be done to mitigate them 

(resulting in a ‘Mitigated Condition’), and an improvement. Intervention can then be planned by looking 

at risk and cost benefit for a particular intervention.  

 

The log scale makes sure that urgent cases are at the top of the list. Each transformer is analyzed 

individually to identify family issues. An assessment would evaluate whether the failure mode is likely 

to be benign or involve tank rupture and possible substantial collateral damage. These consequence 

analyses are included in the risk analysis. 

 

Transformers are then grouped into an action plan, with those which:  need attention ‘immediately’;  on 

the replacement list for the next 2 years;  2-5 years, 5-15 years, and those seen as being good for the 

foreseeable future. This broad brush approach allows for volume analysis of transformer replacement – 

a strategic goal of the AHI at the outset – with a timescale for action. Urgent cases are dealt with as 

maintainable items. 

 

This log approach is predicated on the AHI being used for long term replacement. A separate analysis 

is performed to review bushings, tap changers, and other maintainable items. This is equivalent to 

addressing car tire issues separately to the car itself. It is understood that the consequence of a tire failure 

may be the replacement of the car, but a new car is not required just because one tire looks to be in bad 

condition. 

 

A probability of failure may be calculated indirectly. There ae timescales associated with intervention 

required based on the values of the raw data – timescales which are calibrated across the whole data set. 

Higher scores have a more urgent need and a shorter timescale. These have a higher probability of 

failure. How high? Difficult to say based on the math and discussion we have seen in this paper. But by 

preserving the sense of urgency through calibrated analyses and log scales, the relative probability is 

also preserved, whatever that might be. This leads to questions: 

 

What is an acceptable probability of failure over the next year for a particular transformer? 

 

How about over the next week? How about during peak summer load? How about during the next storm? 

 

OLTC Exterior

Design FamilyDesign ScoreYear Now Mitigated Possible ImprovementDielectric Thermal Mechanical Ageing Contamination

A04a 32 1965 221 213 8 100 100 1 13 10 3 10

E11b 32 1959 170 103 68 30 60 1 190 10 10 10

G02b 104 1994 170 135 35 30 60 36 100 1

E11b 32 1959 154 143 11 30 100 1 23 10 10 3

D07 12 1965 152 126 26 60 60 1 70 10 1

M01 5 1957 151 94 57 30 60 1 160 10 3 10

H02 111 1971 147 100 47 3 60 140 3

P21 104 1972 144 139 5 1 3 100 13 1 10

C04 32 1968 138 85 54 10 60 1 140 30 1

H07a 12 1964 133 107 26 1 100 1 70 10 3

A04b 102 1967 132 106 26 10 60 1 70 10 3

P06a 131 1967 131 107 24 1 60 1 63 10 1 10

H07a 12 1964 129 106 23 1 100 63 10 1

E11a 102 1955 129 105 24 10 60 1 70 1 10

H07a 12 1966 129 106 23 1 100 63 10 1

E11b 32 1959 129 107 22 30 60 3 43 30 10

F08 120 1956 124 105 19 3 60 1 50 10 1

L05 111 1962 122 99 23 1 60 63 10 1

A04b 102 1967 122 96 26 1 60 70 10 3

A10 3 1960 122 106 16 100 3 1 40 10 1

Overall Condition OilCore and Windings
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These values are not easy to either assess or calculate, and may be subject to organizational concerns 

over ‘admitting’ that the probability of failure is not zero. 

 

LINKING ASSET HEALTH INDEX AND PROBABILITY OF FAILURE 
 

If timescales and/or probabilities are not put in at the ‘front end’ of the AHI effort, and related to raw 

data and failure modes, it will be difficult to generate a reasonable probability of failure at the ‘far end’. 

 

There is an approach where, if the AHI retains relative urgency, we can map the ranked list  of 

transformers through to historical failure rates, and predict which units are most likely to fail within a 

given timescale. This is, in fact, a very appealing approach – as it’s based on empirical data in terms of 

failures, and can be justified in that populations are unlikely to be varying rapidly. It does require that 

future years will look somewhat like previous years, and that the population of transformers does not 

change too rapidly, year on year. 

 

It is possible to build probability of failure into an AHI from the outset. Caveats discussed in this paper 

include data precision, poor relationship between parameter values and failure rates, conflation of 

imprecision through data encoding techniques (1-5, A-D etc), further conflation through component 

score combinations and weightings, and overestimation of the accuracy of the final result. We have to 

be careful to check candidates against known failure modes. What did other, similar, units do? Is the 

diagnosis bad, the prognosis good? Ranking is the start of an asset health review – not the end. 

 

In any AHI system which generates a score, there needs to be an understanding of the accuracy or 

precision of the final score. If it comes out as 4.8 on a scale of 1 to 10, and is accepted as the health of 

the transformer, remember that 4.8 is an estimate – and has a degree of uncertainty. The problem is that, 

if the AHI is not monotonic in relation to urgency, the final ranking is not monotonic. A higher/worse 

score may not reflect the urgency in any degree (see Figure 6). Without understanding the source of the 

AHI, making claims about the ranking can be extremely misleading. To put it another way: will the top 

units in an AHI list definitely be the ones that fail over the next few years? 

 

The ‘true’ probability of failure will collate condition-based data within operational and external 

parameters. The act of maintenance can lead to conditions which  lead to failure.  

 

AN APPROACH BASED ON THE PRINCIPLE OF EQUIVALENT PROBABILITY 
 

The approach identified here is based on actions and timescales associated with raw or derived data 

values or parameters. In a very simple example, a value is measured for a parameter and an action 

associated with it depending on a binary view. The data is encoded as  indicating ’good’ or indicating 

‘bad’. The data could be hydrogen level in a DGA analysis, or a power factor, or a derived value of 

interest. 

 

  

For each encoded condition, there is an associated action and a timescale. For example: 

- ‘good’:  re-measure and review in one year 

-  ‘bad’ : perform further testing and evaluation within 1 month  

 

Please note the values and timescales are purely indicative. 

 

The overall historic and expected failure rate for the asset is 0.5%, with the expectation for a ‘good’ 

asset that it has a 0.5% failure probability in the year-long timescale. Then for the ‘bad’ asset, it is 

possible to state that it is has an equivalent probability in the timescale identified  (0.5% in one month 

in this instance). The annual equivalent is not 6%, which is the plain multiplication, but 5.8%, based on 

the math of probability analysis. Table 2 summarizes the approach. 

 

Table 2 
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Equivalent Annual Probabilities 

 

 

 

 

 

 

 

 

The approach can be extended to multiple parameters, with multiple codes (for example: good, fair, 

poor, bad), and multiple components. It can be applied to numeric condition codes: 1 through 10. There 

is no need to have a log or a linear scale, but all encodings will have the same equivalent probability. 

 

It is useful to have equivalence based on time applied to failure modes – not just an individual analytic 

which encodes data. This requires collating data at the failure mode level - and maintaining the calibrated 

timescales. It should be noted that having more contributory data to collate for a given failure mode will 

improve precision – confirming the urgency of the situation. Collated scores for a failure mode should 

reflect the urgency. Having more data which is ‘good’ does not ameliorate the ‘bad’ data, unless we can 

redefine what the relevance of a component to the failure mode is. 

 

The overall approach is summarized as follows: 

 

1. Identify the assets of interest 

2. For each asset class:  identify the components  (or asset subsystems, or whatever they are called 

in the asset system) 

3. For each component: identify high level failure modes (a simple RCM analysis will suffice) 

4. For available data:  identify analytics (simple, standard, ad hoc) which indicate a failure mode 

in operation 

5. Score each analytic with a consistent and calibrated timescale (of appropriate values for the 

application), with each code/category labelled and assigned a PoF 

6. For each analytic, identify the relevance to each of the failure modes 

7. Collate analytics for each failure mode to score the failure mode – action & timescale – based 

on probability equivalence and calibrated codes 

8. Collate Failure modes for each component, and score the component, based on probability 

equivalence and calibrated codes 

9. Collate failure modes for each component, and score the asset, based on probability equivalence 

and calibrated codes 

 

The result is a set of scores which are calibrated and consistent across the assets of interest. The approach 

has not yet been fully implemented in any practical systems, but at least one practical system follows 

the main detail – permitting calibrated probabilities based on timescales – and applies those to the assets 

of interest. 

 

SUMMARY 

 
It is unlikely that we will soon have a purely scientific and mathematically rigorous approach to Asset 

Health Indices, which begins with data and relates to failure modes directly – with extensive statistics 

for measurable parameters and consequent failure. -. Using ranking and looking for relatively poor 

condition units is valuable, but needs to be done with further consideration of the fleet and operational 

environment. 

 

A clear statement of the role and application of an AHI helps identify what data to include in the 

generation of the AHI. The process by which an AHI is generated removes information from the final 

statistic, and the value of the final statistic must be clear – is it useful? 

 

Code Hydrogen Timescale Action PoF Annual 

Equivalent 

Good <100 1 year Resample 0.5% 0.5% 

Bad >=100 1 month Replace 0.5% 5.8% 
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Consistent calibration of encoded data, based on equivalent probabilities, help allow for justifiable 

AHI’s which are: traceable, refer to probabilities entered at the outset, and  are consistent across the 

analysis from data to AHI. 
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