

Mahendra Patel & Sean McGuinness Grid Operations & Planning EPRI

© 2015 Electric Power Research Institute, Inc. All rights reserved.

Protection Settings Evaluation Tool (PSET)

<u>Software</u>

Intended use:

- Automatically assess the protection performance and identify misoperations, uncleared faults, and near-misses
- Use Web Browser/Excel/Access interface to report, track and trend over time

Requires network model with at least some protection relays in CAPE or ASPEN

Project Task Timeline

2015: Initial version of CAPE macro

2016: ASPEN macro, add near-miss to CAPE macro, basic database, case studies

2017: Optimize macros for speed, add new study scenarios, develop advanced trending database, case studies

2018: Further simulations, case studies

The Problem – Protection Misoperations

NERC Stats

- Misoperations occur in roughly 1 in 10 faults
- Approximately 29% of protection misoperations are due to settings, logic or design errors.
- NERC Events Analysis determined that incorrect ground instantaneous overcurrent settings on 115 kV and 230kV systems are a leading cause of relay misoperations.

Trends

- Misoperations tend to be more commonly associated with numerical relays. Number of numerical relays increasing.
- Significant changes to the system (generation retirements, etc.) are occurring quickly and can impact the performance of protection systems.
- Industry is losing P&C expertise at a rapid pace.

Grid Scenarios for Relay Settings

Protection Settings Evaluation Tool (PSET)

Implemented u	ising both CAF	PE and	d OneL	iner		
EPRI Protection Performance Review						
1. Grid Region To Study Grid Voltage (kV) 115 Grid Area	4. Fault Location Close-In Faults			ОК		
Grid Zone 0	Remote End Breaker Open			Callo	CI (Euture)	
Study depth around selected bus 0	Mid-line Fault #1 5 0.01-	99.99 (%)		Load Options	(Future)	
2. Operating Scenarios to Study	Mid-line Fault #2 70 0.01- Mid-line Fault #3 90 0.01-	99.99 (%) 99.99 (%)				
Vormal Intact Network Varmal Intact Network Inhibited Breaker/Circuit Breaker Fail Single Line to Ground Dauble Line to Ground Varmal Intact Network Single Line to Ground With Resistance SLG Resistance SLG Resistance File Home Creat Line to L Duble L DLG Res Varmal Intact Network Normal Intact Network Normal Intact Network Normal Intact Network Normal Intact Network Single Line to Ground With Resistance SLG Resistance Normal Intact Network Normal Intact Intact Normal Intact Intact Normal Intact Intact Normal Intact	Protection Performance 5. Protection Simulation Depth 6. Coordination Time Between Prim/B 7. Max Overall Fault Clearance Time 8. Max Trip Time for Close-In Faults { 9. Max Trip Time Remote-End Faults 10. Max Line Reach For Instantaneou 11. Min Trip Time for Remote-End Fau e External Data Database Tools	ckp Relays (=50% line) (>50% line) s Tripping uits (>010) Q Tell me what	2 0.3 2.1 0.4 90 90 90 90 90 90 90 90 90 90	conds conds conds conds ine conds	ELECTRIC PC RESEARCH I	OWER
View Station Repo	rt From Most Recent Results	1 GLEN LYN	132.0kV		-	~
View All Results F	or Grid Voltage	132				~
View Zone 1 and I	nst Overcurrent Over-reaches					\sim
Trend Historical P	otection Performance at Substation					\sim
View issues by Ty	be and the second se	Misoperatio	'n			\sim
e				Help: Select drop-down b view a repor selected top	from any of tl boxes above t t on the ic.	he o

- Evaluate coordination of protection near a busbar, in a grid area or across whole grid
 - Applies multiple fault types across all lines in study area
- Flags relay misoperations, fast/slow trips, uncleared faults
- View results in web browser & store in database for simple reporting, trending over time
- Use database to track performance. Flag when grid changes cause relays to become miscoordinated.

Proactively identify & avert potential misoperations!

Examines local protection relays after short circuit simulated and again after each circuit breaker trips open

Was the fault isolated?

- Did each relay trip correctly and quickly?
- Did any relay over-reach?
- Were any relays miscoordinated?
- Was any relay close to misoperation (near miss)?

Has Protection Performance Changed Since the Last Time the Tool was Run?

Define Fault Study and Protection Criteria - CAPE

Identifying Protection Misoperation Near Misses

Simulations never 100% accurate

Fault current in practice is greater or less than simulation

- Trip setting=1000A, but what if fault current is 999A or 1001A?
- "Near-miss" feature identifies settings with small margin

RESEARCH INSTITUTE

CAPE/ASPEN Macros – Results – Web Browser

 \bullet

EPRI Protec	tion Settings Evalu	ation Tool 2017 (B	ETA) Results				
Results Crea	ited:	29-Aug-17 11:02:3	1				
Database:		C:\Program Files (x86)\ASPEN\1LPFv14\SAMPLE30.OLR					
Network Stu	dy Date:	29-08-2017					
Studied Grid	Voltage:	132					
Studied Grid	Area:	0					
Studied Grid	Zone:	0					
Studied Bus	bar:						
Fault	From Station	To Station	Voltage	Circuit	Distance To		

- Output file in XML file format
- Can open in a Web Browser, Excel, Access etc
- High-level results per fault; hover mouse over a fault and a box pops up with specific relay op details
 - Just click CTRL-O from Internet Explorer, FireFox, or Excel and select the XML file

Fau Nu	ılt nber	From Station	To Station	Voltage (kV)	Circuit ID	Distance To Fault	Fault	Туре		Contingency		Outage(s)	Fault (Seco	Clearance Time nds)	Test Result	
1		2 CLAYTOR 132.0kV	1 GLEN LYN 132.0kV	132	1	5	SINGL (ohm)	E_LINE_GROUND, F	R=0	Normal state w network	ith intact		9999.0	000	Inst Over-rea Cleared	ach Misoperation, Fault Not
2		1 GLEN LYN 132.0kV	2 CLAYTOR 132.0kV	132	1	5	SINGL (ohm)	LE_LINE_GROUND)	D, R=0	Normal state network	with intact		9999.	000	MISOPERAT	ION, Fault Not Cleared
-		2 CLAVTOR	1 CLENI IVN				CINCU		0-0	Normal state u	ith intact					
3	Station		Circuit Break	er		Voltage (kV)		Circuit ID	Tripping	Relay	Tripping Ele	ement		Trip time (Seconds	s)	Test Result
4	6 NEVAD	0A 132.0kV	2 CLAYTOR 13	32.0kV		132			NV-G2 (I	В)	Ground Ove	rcurrent		0.064		MISOPERATION
5	8 REUSE	NS 132.0kV	6 NEVADA 13	2.0kV		132			RE-G1 (E	3)	Ground Ove	rcurrent		1.319		MISOPERATION
	7 OHIO	132.0kV	6 NEVADA 13	2.0kV		132			OH-P1 (I	B)	Phase Over	current		0.756		MISOPERATION
6	7 OHIO	132.0kV	6 NEVADA 13	2.0kV		132			OH-G1 (B)	Ground Ove	rcurrent		1.008		MISOPERATION
7	6 NEVAD	0A 132.0kV	10 NEW HAMI	SHR 33.0kV		33			NE-NHO	1 (B)	Ground Ove	Ground Overcurrent 0.995			MISOPERATION	
1		132.0kV	132.0kV		_	-	(ohm)			network					Cleared	
8		1 GLEN LYN 132.0kV	2 CLAYTOR 132.0kV	132	2	5	SINGL (ohm)	E_LINE_GROUND, F	R=0	Normal state w network	ith intact		9999.0	000	MISOPERATI	ON, Fault Not Cleared
9		2 CLAYTOR 132.0kV	1 GLEN LYN 132.0kV	132	2	70	SINGL (ohm)	E_LINE_GROUND, F	R=0	Normal state w network	ith intact		9999.0	000	MISOPERATI	ON, Fault Not Cleared
10		1 GLEN LYN 132.0kV	2 CLAYTOR 132.0kV	132	2	70	SINGL (ohm)	E_LINE_GROUND, F	R=0	Normal state w network	ith intact		9999.0	000	Inst Over-rea Cleared	ach Misoperation, Fault Not

CAPE/ASPEN Macros – Results – New Excel Interface

2017 - New Excel Sheet Interface

- Presents high level overview of latest or historical simulation run
- Compare sets of results; e.g. this week vs last month/last year
- Easy to filter results by station, fault clearance issue etc. Report instantly updates
- Identify changes since last run flag new misoperations, miscoordinations, uncleared faults that weren't an issue the last time you ran the tool
- Track/trend fault clearance times
- Present high level statistics and graphs on fault clearance times and issue type

Clear Filters	SLOW TRIPPING FOR NEAR-END	Protection Performance Overview	Copy Chart to Clipboard	Copy Results Table	RELAY OPERATIONS	
Return to Dashboard	FAULT, Fault Not Cleared, 12, 1% INST TRIP OVER-REACH, Fa	MISOPERATION, 48, 4% Fault Not Cleared, 41, 4%	FAULT, 10, 1%	PSET Stude ID Faulted Circuit Tim	earance ne Protection Performance Assessment	▼ Tripped Element ▼ Trip Time ▼
PSET Study ID 🗄 🐛	Not Cleared, 19, 2%		nst Over-reach Misoperation, 145, 13%	04/03/2017 #000_2 CLAYTOR 132.0kV 1 GLEN LYN 132.0kV 1 13:	0.05 Inst Over-reach Misoperation	1 GLEN LYN 132.0kV 2 CLAYTOR 132.0k' Phase Overourre 0.017
0011010017 #000						Ground Overcum 0.017
02/16/2017 #000		Cleared, 326, 29%	«			2 CLAYTOR 132.0kV 1 GLEN LYN 132.0k' Phase Overourre 0.017
04/03/2017 #000						Ground Overcurr 0.017
						6 NEVADA 132.0kV 2 CLAYTOR 132.0kV Ground Overcum 0.032
					01	1 CLENU VAL100 00 V 0 CLAVEOD 100 00 Disco Occording 0.017
		Inst Over-reach Misoperation,	INST TRIB OVER-REACH 61 5%		UK	Crowed Overcome 0.017
		Paul Not Cleared, 544, 50%	1121 1111 012111211, 02, 23			2 CLAVTOR 122 0FV 1 GLENI VN 122 0F Phase Oustaures 0.017
Differences Between Results 🛛 🗄 🍢						Ecourd Querours 0.017
Net Unique Ulaique Tripping				1 GLEN LYN 132 06Y 2 CLAYTOR 132 06Y 113	0.05 Inst Querreack Miconeration	1 GLEN LYN 132 0kW 2 CLAYTOR 132 0k' Phase Querourre 0.017
Interentique official				TOLLINE THE IOLIGET E OLIVET FOR THE IOLIGET FOR	coo inscore regon resoperation	Ground Overcure 0.017
						2 CLAYTOB 132 0kV 1 GLEN LYN 132 0k' Phase Overcurre 0.017
Protection Issue 📰 📡						Ground Overcurp 0.017
MISOPERATION	H	Histogram of Fault Clearance Time	S Copy Chart to Clipboard			6 NEVADA 132.0kV 2 CLAYTOR 132.0kV Ground Overcury 0.037
MICODEDATION Established Classed		0				0.033
MISOPERATION, Fault Not Cleared	30				OK	1 GLEN LYN 132.0kV 2 CLAYTOR 132.0k' Phase Overcurre 0.017
OK						Ground Overourn 0.017
SLOW TRIPPING FOR NEAR-END FAULT						2 CLAYTOR 132.0kV 1 GLEN LYN 132.0k' Phase Overcurre 0.017
	25					Ground Overoury 0.017
SLOW TRIPPINGFOR NEAR-END FAULT, F					INST TRIP OVER-REACH	1 GLEN LYN 132.0kV 2 CLAYTOR 132.0k' Phase Overcurre 0.017
~	S		_			2 CLAYTOR 132.0kV 1 GLEN LYN 132.0k' Phase Overourre 0.017
0	Ŭ 20			2 CLAYTOR 132.0kV 1 GLEN LYN 132.0kV 2 13	0.05 Inst Over-reach Misoperation	6 NEVADA 132.0kV 2 CLAYTOR 132.0kV Ground Overcure 0.032
Station = :%	ILE					0.050
0 Alaska 15.0kV 🔨	CCL					1 GLEN LYN 132.0k V 2 CLAYTOR 132.0k' Phase Overcurre 0.017
	Q 15					Ground Overourn 0.017
O KINDAVIELE IS.OKV	0					2 CLAYTOR 132.0kV 1 GLEN LYN 132.0k' Phase Overcurre 0.017
1 GLEN LYN 132.0kV	þ					Ground Overcurr 0.017
12 VERMONT 33.0kV	E 10				OK	1 GLEN LYN 132.0kV 2 CLAYTOR 132.0k' Phase Overcurre 0.017
M MONITANIA 22 OKU	ž 🖉					Ground Overcurn 0.017
14 MUNTANA 33.0KV						2 CLAY TUH 132.0kV 1 GLEN LYN 132.0k Phase Overourre 0.017
15 MINNESOTA 33.0kV	5			TGLEN LYN 132.0K V 2 CLAY FOR 132.0K V 2 13	0.05 Inst Over-reach Misoperation	6 NE VADA 132.0KV 2 CLAT I DH 132.0KV Ground Overoum 0.037
2 CLAYTOR 132.0kV						1 GLENILYN 122 0kW 2 CLAVTOR 122 0k' Rhago Guerowro 8 017
00 ADIZONA 100 0111						Round Quarours 0.017
Z8 AHIZUINA 132.0kV						2 CL &YTOR 132 0kV LGLENT VN 132 0k' Phase Querourse 0.017
	0-0.1 0.1-0.2 0	0.3-0.4 0.5-0.6 0.9-1 >20 0-0.1	0.1-0.2 0.9-1 >20			Bround Overours 0.017
Fault Clearance Time 📰 🔆					OK	1 GLEN LYN 132.0kV 2 CLAYTOR 132.0k' Phase Overcurre 0.017
>20 0.1-0.2		04/03/2017 #000	02/16/2017 #000			Ground Overcure 0.017
02.04		Study Case and Fault Clearance Time (secon	ds)			2 CLAYTOR 132.0kV 1 GLEN LYN 132.0k' Phase Overcurre 0.017
0.3-0.4					INST TRIP OVER-REACH	1 GLEN LYN 132.0k V 2 CLAYTOR 132.0k' Phase Overourre 0.017
0.9-1 0-0.1						2 CLAYTOR 132 0kW1 GLEN LVN 132 0k' Phase Ouerours 0.017
						-

CAPE/ASPEN Macros – Results – New Excel Interface

CAPE/ASPEN Macros – Results – New Excel Interface

By clicking on filters shown in previous slide, the main table automatically and instantaneously updates

Results shown here are just faults on lines connected to Glen Lyn 132 kV

G		Н	1	J		К	L	М
Conv. Pe	sults Table							
сору ке	suits fable			RELAT OPER	ATIONS		T -ii	
	Faulted Circuit	▼ T	ime 🔽	Protection Performance	Assessment 🔽	Tripped Element	Element	Trip Time
04/03/2017 #00		V 2 CLAYTOR 132.0kV 1 13:	0.05	Inst Over-reach Misoperation		1 GLEN LYN 132.0kV 2 CLAYTOR 132.	 0k' Phase Over	rcurre 0.017
							Ground Ove	ercurri 0.017
						2 CLAYTOR 132.0kV 1 GLEN LYN 132.	0k' Phase Over	rcurre 0.017
							Ground Ove	ercurri 0.017
						6 NEVADA 132.0kV 2 CLAYTOR 132.0	IkV Ground Ove	ercum 0.037
								0.033
				ОК		1 GLEN LYN 132.0kV 2 CLAYTOR 132.	0k' Phase Over	rcurre 0.017
							Ground Ove	ercurri 0.017
						2 CLAYTOR 132.0kV 1 GLEN LYN 132.	0k' Phase Ove	rcurre 0.017
							Ground Ove	ercum 0.017
				INST TRIP OVER-REACH		1 GLEN LYN 132.0kV 2 CLAYTOR 132.	0k' Phase Over	rcurre 0.017
						2 CLAYTOR 132.0kV 1 GLEN LYN 132.	0k' Phase Over	rcurre 0.017
	1 GLEN LYN 132.0k	V 2 CLAY I UR 132.0kV 2 13	0.05	Inst Uver-reach Misoperation		6 NEVADA 132.0kV 2 CLAY FUR 132.0	IKV Ground Uve	ercurn 0.037
							01.1 Dt 0	0.033
						TGEENETN 132.0KV 2 CEATTOR 132.	OK Phase Over	rcurre 0.017
						2 CLAVTOD 122 0EV 1 CLENU VN 122	Ground Ove Ok' Dhase Over	Proum 0.017
						2 CEATTOR 132.0KV TREENETN 132.	Ground Ow	aroure 0.017
				OK		1 GLEN LYN 132 0MY 2 CLAYTOR 132	Ok' Phase Over	rourre 0.017
				OK		TREENETHINGSONY SCENTION 132.	Ground Ow	arcum 0.017
						2 CLAYTOR 132 06V LGLENT VN 132	Ok' Phase Oue	rourre 0.017
				INST TRIP OVER-BEACH		1 GLEN LYN 132 0kV 2 CLAYTOB 132	0k' Phase Over	rourre 0.017
						2 CLAYTOR 132.0kV 1 GLEN LYN 132.	0k' Phase Over	rcurre 0.017
	1 GLEN LYN 132.0k	V 3 TEXAS 132.0kV 1 132	9999	Inst Over-reach Misoperation.	Fault Not Cleared	6 NEVADA 132.0kV 2 CLAYTOR 132.0	kV Ground Ove	ercum 0.080
								0.557
						2 CLAYTOR 132.0kV 1 GLEN LYN 132.	0k' Phase Over	rcurre 0.017
							Ground Ove	ercum 0.017
						5 FIELDALE 132.0kV 2 CLAYTOR 132.	0k Ground Ove	ercum 6.786
						8 REUSENS 132.0kV 6 NEVADA 132.0	kV Ground Ove	ercurri 1.361
								1.142
						7 OHIO 132.0kV 6 NEVADA 132.0kV	Phase Over	rourre 0.720
								0.656
								0.565
							Ground Ove	ercum 0.909
								0.541
				MISOPERATION, Fault Not C	leared	6 NEVADA 132.0kV 2 CLAYTOR 132.0	kV Ground Ove	ercum 0.462
						5 FIELDALE 132.0kV 2 CLAYTOR 132.	0k Ground Ove	ercum 6.786
						8 REUSENS 132.0kV 6 NEVADA 132.0	kV Ground Ove	ercum 1.239
						7 OHIO 132.0kV 6 NEVADA 132.0kV	Phase Over	rourre 0.611
								0.596
								0.550

CAPE/ASPEN Macros – Results – Access Database

Output file in XML file format; Can also import into an Access Database

Store protection assessment results

Easily create custom reports for trending over time, audit reports etc

Basic version complete in 2016, advanced version with tracking/trending/auditing in 2017

Fil	e	Home	Create	External Data	Database Tools	${f Q}$ Tell me what you want to	do	
»		MainForm						
	•	Prote	ction	Setting	Evaluatior	n Tool		C POWER CH INSTITUTE
		View Statio	on Report F	From Most Rece	ent Results	1 GLEN LYN 132.0kV		\sim
		View All Re	sults For O	Grid Voltage		132		\sim
		View Zone	1 and Inst	Overcurrent Ov	er-reaches			\sim
		Trend Histo	orical Prote	ection Performa	ince at Substation			\sim
		View issue	s by Type			Misoperation		\sim
tion Pane							Help: Select from any drop-down boxes abor view a report on the selected topic.	of the ve to

CAPE/ASPEN Macros – Results – Access Database

Quickly Generate Reports such as:

- View all Zone 1/Overcurrent over-reaches
- View protection performance near a line or a station
- Trend over time, find where protection performance across the grid has improved or new issues have arisen e.g.
 - New issues flagged this month that weren't there last month or 2017 vs 2016
- Study future grids and see if new issues arise in coming year with the commissioning of new lines, commissioning/de-commissioning of generators

aults By Station 1 GLEN	LYN 132.0kV		Faults with Issue: Misoperation	
ToStation 2 CLAYTOR 132.0kV Voltage 132 Ckt ID 1 Contingency Normal state with intact r JutagedElement	FaultType	Fault Protection Clearance Performance Time Assessment	Distance FaultType Fault Relay_FromStation Relay_ToStation Voltage Ckt ID Tripped Element To Fault Clearance Time From Station 1 GLEN LYN 132.0kV To Station 2 CLAYTOR 132.0kV Voltage 132 Ckt ID 1 Contingency Normal state with intact network	Trip Re Time Pe As
istance To Fault 5			5 SINGLE_LINE_GROUN 0.05 2 CLAYTOR 132.0kV 1 GLEN LYN 132.0kV 132 2 Phase Overcurrent	0.017 M
	SINGLE LINE GROUND, R=0 (ohm)	0.05 Misoperation	5 SINGLE_LINE_GROUN 0.05 6 NEVADA 132.0kV 4 TENNESSEE 132.0kV 132 1 Fuse	0.014 M
	THREE-PHASE R=0 (obm)	0.05 Misoperation	5 SINGLE_LINE_GROUN 0.05 2 CLAYTOR 132.0kV 1 GLEN LYN 132.0kV 132 1 Phase Overcurrent	0.017 O
istance To Fault 70	THREE-PHASE, R=0 (01111)	0.05 Misoperation	5 SINGLE_LINE_GROUN 0.05 2 CLAYTOR 132.0kV 1 GLEN LYN 132.0kV 132 1 Ground Overcurren	t 0.017 O
Bance for date 70	SINCLE LINE CROLIND B-0 (abm)	0.05 Missession	5 SINGLE_LINE_GROUN 0.05 1 GLEN LYN 132.0kV 2 CLAYTOR 132.0kV 132 2 Phase Overcurrent	0.017 M
	SINGLE_LINE_GROUND, R=0 (onm)	0.05 Misoperation	5 SINGLE_LINE_GROUN 0.05 1 GLEN LYN 132.0kV 2 CLAYTOR 132.0kV 132 1 Phase Overcurrent	0.017 OF
	THREE-PHASE, R=0 (ohm)	0.05 Misoperation	5 SINGLE_LINE_GROUN 0.05 1 GLEN LYN 132.0kV 2 CLAYTOR 132.0kV 132 1 Ground Overcurrer	t 0.017 O
listance To Fault 90			5 THREE-PHASE, R=0 (on 0.05 2 CLAYTOR 132.0kV 1 GLEN LYN 132.0kV 132 2 Phase Overcurrent	0.017 M
	SINGLE_LINE_GROUND, R=0 (ohm)	0.05 Misoperation	5 THREE-PHASE, R=0 (on 0.05 1 GLEN LYN 132.0KV 2 CLAYTOR 132.0KV 152 1 Ground Overcurrent	0.017 M
	THREE-PHASE, R=0 (ohm)	0.05 Misoperation	5 THREE-PHASE R-0 (oh 0.05 1 GLEIVEN 152.0KV 2 COATION 152.0KV 152 2 PHase Overcurrent	0.017 0
ontingency N-1 state with largest in-fe	eed outaged		5 THREE PHASE R=0 (oh 0.05 2 CLAYTOR 132.0kV 1 GLENLYN 132.0kV 132.1 Ground Overcurren	t 9999.00 No
utagedElement 1 GLEN LYN 132.0kVUnit	#1 100 MVA		5 THREE-PHASE, R=0 (oh 0.05 6 NEVADA 132.0kV 4 TENNESSEE 132.0kV 132 1 Fuse	0.014 M
istance To Fault 5			5 THREE-PHASE, R=0 (oh 0.05 1 GLEN LYN 132.0kV 2 CLAYTOR 132.0kV 132 1 Phase Overcurrent	0.017 O
	SINGLE_LINE_GROUND, R=0 (ohm)	0.05 Misoperation	70 SINGLE_LINE_GROUN 0.05 1 GLEN LYN 132.0kV 2 CLAYTOR 132.0kV 132 1 Phase Overcurrent	0.017 OF
	THREE-PHASE, R=0 (ohm)	0.05 Misoperation	70 SINGLE_LINE_GROUN 0.05 1 GLEN LYN 132.0kV 2 CLAYTOR 132.0kV 132 1 Ground Overcurrer	t 0.017 O
istance To Fault 70	, (2000)		70 SINGLE_LINE_GROUN 0.05 2 CLAYTOR 132.0kV 1 GLEN LYN 132.0kV 132 1 Phase Overcurrent	0.017 Of
	SINGLE_LINE_GROUND, R=0 (ohm)	0.05 Misoperation	Thurday Centember 15, 2016	
			marsuay, september 15, 2010	

Summary of Protection Settings Evaluation Tool (PSET)

Problem	Protection becoming more numerous and complex: 10s to 100+s of settings
	Grid state (outages and generators) can have a massive impact on protection performance and coordination
	Relay settings calculated for credible grid states (N-1 etc) at that time
	Settings checked/revised at maintenance intervals like 3-7+ years
	10% of faults in US have at least one relay misoperation; 29% of misoperations due to relay configuration/settings issues
Solution	Automatically simulate multiple fault types at multiple locations along each transmission line across the grid and for each fault assess each relay tripping
Solution	
Solution	For each fault, look at trip times of each relay and identify if all protection relays near the fault meet set criteria. Did any relays over-reach or misoperate, was the fault cleared quickly?
Solution	For each fault, look at trip times of each relay and identify if all protection relays near the fault meet set criteria. Did any relays over-reach or misoperate, was the fault cleared quickly? Engineers can't be expected to manually examine 1000s of results, so produce short, simple, easy to read report identifying issues - results file can be viewed in a webpage, Excel, or brought into an Access DB
Solution	 For each fault, look at trip times of each relay and identify if all protection relays near the fault meet set criteria. Did any relays over-reach or misoperate, was the fault cleared quickly? Engineers can't be expected to manually examine 1000s of results, so produce short, simple, easy to read report identifying issues - results file can be viewed in a webpage, Excel, or brought into an Access DB Automatically compare latest results with last week/month/year etc. Flag new protection issues which didn't exist the last time you ran the tool

Together...Shaping the Future of Electricity

System Simulator Example: Fault Initiation (5% of Line)

System Simulator Example: First PCB Opens

System Simulator Example: Second PCB Opens (Misoperation and Near Miss)

System Simulator Example: Third PCB Opens & Clears Fault

System Simulator Example: Miscoordination

System Simulator Example: Primary Protection

System Simulator Example: Backup Protection

