OPTIMIZATION ENABLER FOR A VOLTAGE AND REACTIVE POWER MANAGEMENT (OPEN-VQ) SYSTEM FOR SMART OPERATION

T. FUKUDA, S. SHINMYO, H. SEKI TEPCO Power Grid, Inc. Japan

Q

S. OMI, Y. TADA, S. SUENAGA Hitachi, Ltd. Japan H. D. CHIANG, B. WANG

Bigwood Systemd, Inc. U.S.A

1-1. BACKGROUND

Electricity system reform and RESs implementation will increase uncertainties in Japan

Electricity system reform

- : Market mechanism
 - \Rightarrow Procurement uncertainties

RESs implementation

Photovoltaic and wind generation
⇒Generation uncertainties

Facility expansion for the uncertainties requires a huge cost

RESs: Renewable Energy Sources

1-2. BENEFIT OF VOLTAGE OPTIMIZATION

Conventionally;

 voltage and reactive power has been managed manually and controlled locally.

Online optimization of voltage profile will reduce;

- OPEX by loss reduction, and
- CAPEX by enhancement of network security, under the uncertainties caused by market and RESs.

Example:

2% reduction of transmission loss (about 3%) has \$18M cost impact with \$30B fuel cost.

Development of sophisticated voltage and reactive power management is focused

OPEX: Operating Expenditure, CAPEX: Capital Expenditure

2-1. OPEN-VQ CONCEPT

OPEN-VQ consists of multiple functions for various viewpoints

2-1. OPEN-VQ CONCEPT

OPEN-VQ provides feasible management plan by coordination of optimization results in various viewpoint

2-2. VALIDATION OF CONCEPT

Preliminary evaluation shows possibility for coordination of voltage and reactive power management plan

IEEE-118 model case

Optimization results: Different control schemes depend

on scenarios Red: No control Green: Control by Scenario A Yellow: Control by Scenario B

KPIs:

Almost same values between

scenario A and B

(6)

Multiple procedures exist to maximize specific KPIs

2-3. OPEN-VQ SYSTEM PROCESS

Sequential process is adopted to achieve coordination of multiple requirements

3-1. SIMULATION CONDITION

OPEN-VQ system was simulated on TEPCO 1500-bus model for validation

Operational KPIs

- Transmission loss
- Load margin

Facility KPIs

 Control number of switchable devices (shunt equipment, on load tap changer)

Optimal power flow condition

- Objective function: minimization of transmission loss
- Constraints:
 - voltage range,

maximum reactive power output of generators, Capacity and discretized available value of switchable devices

TEPCO 1500-bus model

(8)

3-2. CONTROL PROCEDURE CREATION

Control amount of regulators and KPIs can be checked in this process

Scenario

- 0: no control
- 1: all regulators are controlled
- 2: some switchable devices are locked
- 3: some switchable devices are locked
- 4: all switchable devices are locked

Candidates for control procedure

 Scenario 1, 2, 3, and 4 result almost same transmission loss and load margin.

Different candidates for control procedure result almost same operational KPIs

3-3. CONTROL PROCEDURE CREATION

Chronological control state of each regulator also can be checked on the map viewer

3-4. PROCEDURE SELECTION

Operator can select the best control procedure in point of OPEX and CAPEX

Economical analysis for procedure selection

OPEX: generation cost of power plant (reduced by loss reduction) CAPEX: estimated switching cost of switchable devices

switching number \times

acceptable switching number

(1)

maintenance cost

Scenario 1 and 2 are preferable control procedures in this simulation

4-1. POTENTIAL OF OPEN-VQ SYSTEM FOR DIFFERENT LAYER OF ENTITY

Each entity can choose required function for their voltage and reactive power management

Hierarchical Layer of Entity

OPEN-VQ Function for each Entity

	ISO	TSO
Look-Ahead Operation Condition Prediction	0	0
Optimal Voltage Profile Solving	0	—
Control Procedure Creation	_	Ø
Control Procedure Selection		Ø

4-2. POTENTIAL OF OPEN-VQ SYSTEM FOR DIFFERENT TIME SCALE

OPEN-VQ can optimize asset management with long-term look-ahead operation condition

 OPEN-VQ system providing feasible management plan by coordination of optimization results in various viewpoint is proposed.

- Its process consists of;
 - ✓ a short-term look-ahead operational condition,
 - an optimal voltage profile solving,
 - \checkmark a control procedure creation, and
 - ✓ a control procedure selection.
- Simulation of OPEN-VQ on the TEPCO 1500-bus model show that;
 - \checkmark there are multiple procedures improving the specific KPIs, and
 - the best procedure can be selected in point of OPEX and CAPEX for multiple KPIs.

As a future work,

comparison between the proposed and conventional system, and
development of additional functions for asset management
are planned.