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Project Goal:
Apply new machine learning methods to predict 
network transformer failures.
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• Metadata includes age and transformer demographics 
but excludes operating data (loading, temperature, etc.)

• Apply labels to transformer state (operational, non-
operational, failure type)

• Project funded by NYSERDA under the EPTD High 
Performing Grid Program

The starting point: transformer metadata
Can we use metadata and machine learning to prioritize assets for replacement?
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Will a given transformer fail in 2016 or 2017?
Failure prediction can be framed as classification

● Any transformer that failed is a positive example; any 
transformer that did not fail is a negative example.

● After removing incomplete rows and encoding the 
categorical data, we have:

○ 26,736 labelled training examples (2,757 positive, 
23,979 negative)

○ 9 features, encoded as a 112 dimensional vector
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Initial Analysis: Insights & Observations
Metadata has some predictive power, but need to explore time series data

● After cleaning and aligning data, 26.7K training examples with 2.7k
failures

● Metadata is sufficient to predict 69.5% of failures and 99.8% of non-
failures in 2016/2017

● More information, such as inspection, DGOA or RMS data, is needed to 
accurately flag failing transformers without also flagging hundreds or 
thousands of non-failing transformers
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Balancing sensitivity and specificity
Need to balance the cost of in-service failure and the cost of unnecessary removal

CIGRE Grid of the Future 2017

• Because failures are a small fraction (~1%) of the dataset, it is 
trivial to achieve 99%+ accuracy by assuming no failures will 
occur

• We have to balance between incorrectly flagging a 
transformer as a likely failure, and failing to classify a failing 
transformer.



Building a survivorship model
What is the probability that a given transformer will fail at a certain age?

• Cumulative distribution function for each transformer lets us 
calculate the “actuarial risk” of failing

• The curves can be updated as the model evolves, and will 
incorporate sensor/inspection data

• Failure risk can be used to prioritize maintenance and assess 
install base fragility
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Initial Results
Transformer age strong indicator, demographic data improves model

• Unsurprisingly, the most predictive feature is the year of 
manufacture: older transformers fail more often

• Metadata is sufficient to predict 69.5% of failures and 
99.8% of non-failures in 2016/2017

• During the test set, the model predicts 285 out of 410 
actual failures
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TAKEAWAY & NEXT STEPS

Although metadata is useful in predicting failures, to achieve high 

accuracy, the models should incorporate time series data, including 

loading, temperatures, pressure, DGOA, and maintenance records
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