

CIGRE Study Committee C4

PROPOSAL FOR THE CREATION OF A NEW WORKING GROUP¹

WG N° C4.48		r: Ivan Dudurych (Ireland) an.Dudurych@Eirgrid.com
Strategic Directions # ² : 1,2		Technical Issues # ³ : 6,8
The WG applies to distribu	tion networks [*] : Yes	s/ No
Potential Benefit of WG wo	rk # ⁶ : 1,2,5	
Title of the Group: Overvoltage Withstand Characteristics of Power System Equipment 35-1200 kV		
Scope, deliverables and pr		
Background:		
	ectrum of the pheno	racteristics (OVWC) of power system equipment mena. Instead, we have several stand-alone parts of the spectrum, e.g:
that include: lightning	impulse withstand	vel for HV equipment, as a set of standard values voltage (LIWV) and short duration power-frequency d LIWV and switching impulse withstand voltage
CIGRE WG 33.10 de EHV equipment from	345 kV and higher,	of temporary overvoltages (TOVs) versus time for and or UHV AC systems" of WG C4.306 has a collection
		tems, but not as continuous time characteristics.
comparison of estimated ligh and SIWV accordingly. TOV planning and operation for estimated	tning overvoltages (l characteristics, on th stimation of overvolta	een traditionally carried out based on the OVs) and switching overvoltages (SOVs) with LIWV the other hand, have been used in power system ages that can arise on the system due to such rge amount of harmonics is present in the system
insulated circuit breakers with not only to reduce LOVs and of overvoltages needs to be seconds. Furthermore, advan – PMUs), and in electromager distribution systems, indicate	n very fast switching SOVs, but also to w carried out in the ent neements in high-spe netic transients (EMT that higher overvolta	sly introduced in power systems, such as gas- transients, or modern zinc-oxide arresters designed ithstand TOVs, it has become clear that assessment ire time frame from microseconds to hundreds of eed measurements (e.g. phasor-measurement units) modelling of the complex transmission and ages can exist in those time periods that are not ting approach, overvoltages are partially defined in
 LOVs – microsecond SOVs – milliseconds TOVs – hundreds of 	up to half a cycle of	power frequency;
	een each of these tin	ne frames and they need to be addressed.
operates in the nominal volta	ge range 35 kV – 12	d characteristics" of power system equipment that 00 kV versus time throughout the range ving stages of work are proposed:
		rervoltage withstand characteristics for power system ansmission and distribution systems from around the

world.

- Collect information about best practices on measurements, assessments, and EMT analyses of the overvoltage withstand characteristics of such equipment.
- Summarise the expert information from the above and propose a universal overvoltage withstand characteristics for power system equipment rated 35 to 1200 kV in a timeframe from microseconds to hundreds of seconds.

Deliverables:

Technical Brochure and Executive summary in Electra

Electra report

⊠ Tutorial⁵

Time Schedule: start: October 2017 Approval by Technical Committee Chairman: Final Report: October 2020

M. Wald

Date: 18/09/2017

Notes: ¹ or Joint Working Group (JWG), ² See attached Table 2, ³See attached Table 1,

⁴ Delete as appropriate, ⁵ Presentation of the work done by the WG, ⁶ See attached table 3

Table 1: Technical Issues of the TC project "Network of the Future" (cf. Electra 256 June 2011)

1	Active Distribution Networks resulting in bidirectional flows
2	The application of advanced metering and resulting massive need for exchange of information.
3	The growth in the application of HVDC and power electronics at all voltage levels and its impact on power quality, system control, and system security, and standardisation.
4	The need for the development and massive installation of energy storage systems, and the impact this can have on the power system development and operation.
5	New concepts for system operation and control to take account of active customer interactions and different generation types.
6	New concepts for protection to respond to the developing grid and different characteristics of generation.
7	New concepts in planning to take into account increasing environmental constraints, and new technology solutions for active and reactive power flow control.
8	New tools for system technical performance assessment, because of new Customer, Generator and Network characteristics.
9	Increase of right of way capacity and use of overhead, underground and subsea infrastructure, and its consequence on the technical performance and reliability of the network.
10	An increasing need for keeping Stakeholders aware of the technical and commercial consequences and keeping them engaged during the development of the network of the future.

Table 2: Strategic directions of the TC (ref. Electra 249 April 2010)

1	The electrical power system of the future
2	Making the best use of the existing system
3	Focus on the environment and sustainability
4	Preparation of material readable for non-technical audience

Table 3: Potential benefit of work

1	Commercial, business or economic benefit for industry or the community can be identified as a direct result of this work
2	Existing or future high interest in the work from a wide range of stakeholders
3	Work is likely to contribute to new or revised industry standards or with other long term interest for the Electric Power Industry
4	State-of-the-art or innovative solutions or new technical direction
5	Guide or survey related to existing techniques. Or an update on past work or previous Technical Brochures
6	Work likely to have a safety or environmental benefit