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SUMMARY 
 

In this paper we observe a statistical trend coupling the driving point impedance seen at a power 

system node and the magnitude of power injection at that node. Based on this relation a criterion to 

validate synthetic transmission grid samples could be developed with the intent of ensuring that 

researchers using such synthetic cases as surrogates for the real cases can draw realistic conclusions in 

their studies. The basic operating hypothesis of our study is that sample grids and operating conditions 

are coupled and cannot be independently assigned. Our intuition, which is proven to be a real 

statistical trend, is that this is due to the well-known inversely proportional relationship between 

power and impedance. This statistical trend can be turned into a validation method, since emulating 

the impedance characteristics of real grids through synthetic samples and assigning operating 

conditions that also reflect this coupling is a method to offer guarantees of observing realistic trends in 

the analysis of ensemble properties of the states calculated via the synthetic grids.    
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INTRODUCTION 

There is increasing recognition that synthetic models for power grids are needed [1] [2] [3], including 

at the institutional level through programs like Grid Data from ARPA-E1. A primary motivation for 

such models is the lack of access to data, either for reasons of security, or due to companies' 

proprietary data concerns. However, models are necessary for any type of power system simulation, 

and for testing and development of new grid applications. Therefore, creating realistic models would 

fulfill a real need in the community. 

 

Test cases provide a sample feasible operating point along with the electrical characteristics. The 

operating points are the inputs to the system, the classic ones being real and reactive power for load 

buses and real power and voltage magnitude for generator buses. The corresponding outputs related to 

a positive sequence power flow are voltage magnitudes and angles for load buses, and voltage angle 

and reactive power injection for generator buses. A researcher using a synthetic case would expect to 

have operating points and electrical characteristics that, in concert, allow him/her to observe power 

flow results, i.e. outputs, that have similar trends as those of “real” test cases. 

 

Our working hypothesis is that the electrical characteristics and feasible (as well as typical) operating 

conditions are coupled. To the best of our knowledge, the first work that pointed out and substantiated 

this claim is [4]. The prior art did not provide an explanation for this coupling. 

 

Our goal in this paper is to provide a justifiable relationship between electrical characteristics and the 

placement and magnitude of both positive and negative injection in a sample grid. Our goal is to use 

this notion as part of a validation methodology for synthetic transmission grid models: in fact, if the 

electrical parameters in a synthetic case are statistically similar to real test cases and if the operating 

conditions are coupled to these parameters in a statistically similar way as in the real test cases, then 

the synthetic case should be considered as a realistic surrogate for the real case since it will produce 

similarly distributed state variables. Next we explain the basic intuition that lead us to identify how the 

sample electrical systems and operating points are coupled.  

 

I. BASIC INTUITION 

Considering our working hypothesis, the goal is to find a sufficiently simple guiding principle relating 

feasible and typical operating conditions to the electrical parameters and topology of the system. Note 

that this principle is meant to suggest and justify a statistical trend, not to be an exact law.  

 

Our basic intuition is as follows. Considering the relationship between power and Impedance: 

 

� = |�|� cos	
�
|�| 	⟹ � ∝ 	 |�|�� 	1� 

� = |�|� sin	
�
|�| 	⟹ � ∝ 	 |�|�� 	2� 

 

where cos		
� is the power factor. We note that the diagonal entry of the � matrix, ��,� is the Thévenin 

equivalent impedance seen by node �. A crude and oversimplified view of load or generation at any 

given node would be to consider an impedance, ���� =	 |��|� ��⁄ , in series with the Thévenin 

impedance. The logical conclusion that follows from this, is that more power could be generated or 

consumed at lower total impedance, i.e. at nodes with lower, ��,�. Furthermore, we would expect the 

relationship to follow some sort of power law with a negative exponent around −1. We should 

emphasize that the scope of the analysis present focuses on meshed transmission system. While the 

                                                      
1 http://arpa-e.energy.gov/?q=arpa-e-programs/grid-data  
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intuition holds for lower voltages and radial systems, these simplified structures allow more certainty 

and therefore will likely merit a modified approach. 

 

II. RESULTS & ANALYSIS 

Before examining the relationship between power and impedance, we consider the distribution of 

driving-point impedances, ��,�, for different test cases in Figure 1. Overall, all the cases largely follow 

a similar trend, which suggest this is an intrinsic characteristic of transmission systems. It should be 

noted that the range of magnitudes is in part dependent on what is modeled in the system. For 

example, including the generator step up transformers increases the overall magnitude. However, we 

can expect a similar sort of distribution overall, simply shifted. 

 

Building on the intuition from Section I, we also note that the ERCOT case2 has several impedances 

that are larger by almost an order of magnitude than the rest of the cases. This would suggest that these 

nodes would be particularly poor points in the system for both power generation and consumption. 

Therefore, to continue insuring a viable system while providing a synthetic case to be used as a 

surrogate of the ERCOT case with an acceptable power flow solution, even more (negative) 

correlation between power and driving point impedance would be forced than in the other cases in 

Figure 1. 

 

 
Figure 1 Histogram of driving point impedance for various test cases 

Next, the correlation we conjectured above is tested by separating each power injection vector into 6 

parts, namely: 

1. ��: Real Power Generation 

2. � : Real Power Demand 

3. ��!": Net Real Power (�� − � ) 

4. ��: Reactive Power Generation 

5. � : Reactive Power Demand 

6. ��!": Net Reactive Power (�� − ��!") 
                                                      
2 ERCOT case data was obtained as part of a FERC freedom of information request 
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In all cases the magnitude is considered rather than the resulting signed value. This is because we wish 

to consider these relationships on a log scale, where the power law relationship we conjectured in 

Section I appears as a linear trend with negative slope. Additionally, the magnitudes of power possible 

to consume or produce at a given node is of interest and therefore, the sign is not critical. Finally, for 

each comparison, only nodes with non-zero power injection are considered. 

 

The scatter plots in Figure 2 provide an overview of the analysis which follows. For space reasons 

only the ERCOT case and a 6515 bus RTE case available with Matpower [5] are presented. Their 

similarity is meant to underline that all the figures share certain characteristics. First of all, we note 

that there is clearly a non-negligible correlation between the different power vector parts and the 

driving point impedance.  

 

This correlation is shown in Figure 3 for all of the cases. Of particular note are the levels of the 

correlation coefficients. For example, It is clear from both Figure 2 and Figure 3 that real power 

generation is more strongly negatively correlated with the driving point impedance than the other 

quantities. However, what Figure 3 demonstrates is that each of the six correlations considered is 

fairly contained within a range. Additionally, as hypothesized based on the impedance histogram, the 

correlation coefficient for power generation �� is a bit larger for the ERCOT case than for the others. 

Figure 2 Scatter plots of power injection vectors vs. driving point impedance in log-log scale for the ERCOT case (left) and 

RTE 6515 Matpower Case (right). Additionally, the power-law fit line, and bivariate normal distribution fit contour lines are 

shown 

 
Figure 3 Correlation coefficients between driving point impedance at a node and the power injections at that same node. 

Figure 2 also contains power law fit lines in red for each of the scatter plots. While it is clear that the 

points do not simply lie on a line, the fit does provide some insight into the overall trend. The equation 

for these lines in the linear space would be |#| = $%|�|&, 	3� 
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where # stands for each of the 6 power vector components considered. These equations are printed on 

the figures and we note that particularly for generation nodes, ( ) −1, which fits with the intuition 

provided by (1) and (2). 

 

The linear fit is clearly insufficient to describe the relationship between power and impedance. 

However, it also acts as the major axis of level planes for a bivariate normal distribution fit to the data. 

The bivariate normal is defined by two elements * and +: * = 	 ,*-. |/| *-. |0|1 	4� 
+ =	 3 4-. |/|� −54-. |/|4-. |/|

−54-. |/|4-. |/| 4-. |0|� 6 , 	5� 
where # is again each of the 6 power vector components considered. It is a natural next step to 

consider the lack of conformity to the correlation as noisy variation from the trend. A simple way to 

proceed after such an interpretation is fitting a bivariate normal distribution, whose contour plots are 

also shown in Figure 2.  

 

To better visualize and assess how well the bivariate normal fit matches the data Figure 4 overlays it 

on top of the bivariate histogram of the real power injections and the driving point impedance. Overall, 

the fit is quite reasonable, especially for �� (top left). The plots for the demand and net vectors suggest 

that perhaps fitting a bimodal distribution would be preferable, however, that is currently left for 

future work. 

 

 

 
Figure 4 ERCOT case bivariate normal distribution plotted over the bivariate histogram of driving point impedance and real 

power generation (top left), real power demand (top right), and net power injection (bottom). Plots for reactive power 

quantities are quite similar. 

 

As a final analysis, we consider how the possible fitting variables (5, 8,(, +, *) relate to one another 

and themselves for the cases considered. Figure 5 shows an array of plots where each of these 

variables are compared to each of the other ones. Along the diagonal, a histogram of the value is 

given. Again only the plot for �� is given for space reasons, however, the other plots are similar in 

spirit. A few observations are offered: 
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1. There does not appear to be any correlation with the system size, 9. This is important since 

one can extrapolate that the same trend exists for very large systems. 

2. Most of the histograms are fairly tightly centered around a mean.  

3. The covariance term (last column of Figure 5) is fairly independent of all other variables 

besides the two variances. 

The combination of observation 2 and 3 supports the conclusion that there is a probabilistic 

relationship between the driving point impedance at a system node and its power injection. The 

implications are discussed in the following section. 

 

III. DISCUSSION 

The trends and relationships demonstrated in the previous section indicate the nature of coupling 

between topology and load in a power system. The driving point impedance, seen as the Thévenin 

equivalent, encapsulates electrical topological information within it. Furthermore, the impedance 

matrix can be obtained as the inverse of the admittance matrix3, which is constructed from the primal 

branch admittances. Therefore, if the primal elements, i.e. individual branches of a system, are 

appropriately connected, the resulting driving point impedances will also be correct. The analysis 

presented here suggests that for every such correct topology, there is a simple method to allocate 

power injections, such that the resulting case will match reality. Specifically, the load and generation 

should roughly follow the bivariate normal distribution with respect to the driving point impedance. 

These results also help motivate recent publications that identified strong correlation between 

topological features and bus type assignment [4] [6] [7]. These papers found that, while repeated 

permutations result in a normal distribution of the so-called Bus Type Entropy, :, the value, :∗, 
associated with the real test case lies far on the tails of the distribution. Our analysis offers a physical 

intuition to this observation. Namely, power injections are correlated to the topology via the driving 

point impedance. A random assignment of power injections (which is the same as assigning bus type 

except that magnitude is also involved) ignores this correlation and is therefore unlikely to correctly 

reproduce it.  

 

 

                                                      
3 This is not an efficient way to calculate the impedance matrix, however it is useful from an analysis perspective 

Figure 5 Relationship between the various fitting variables used to analyze the correlation of power and driving point 

impedance. N is the system size. 
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Some observations along these lines were made in [8] regarding the so-called Electrical distance, 

which is simply |�|. Our work refines these notions by focusing only on the diagonal, which is largely 

looked over in [8], as the most critical indicator of possible loading at a system node. 

  

This investigation is motivated by a search for meaningful validation criteria for synthetic test cases 

where positive sequence power flow is concerned. The proposed metric is the correlation between the 

driving point impedances of the system and the power injections. The following variables would be 

considered 

1. 5: the correlation coefficient between power injections and driving point impedances. 

2. (: the exponent in the best fit line to the power law function between the power injections and 

driving point impedances. 

3. *: mean of the log of power injections and driving point impedances. 

4. +: the covariance matrix of the log of power injections and driving point impedances. 

If the test case is supposed to emulate a specific system, comparison to that specific system could 

suffice. If, on the other hand, a more general verification is desired, the result can be compared to 

histograms such as those in Figure 5. The more a synthetic case falls in the middle of these 

distributions, the more it displays a realistic and normal operational point with respect to its topology 

and its electrical grid parameters. These similarities can be quantified via various divergence tests that 

compare the distributions of synthetic and real grids. The numerical result would then be included in a 

weighted evaluation of the full list of validation tests. 

 

IV. CONCLUSION 

This paper analyzes the relationship between driving point impedances in a system and the power 

injections for the system. An intuitive derivation presents the expected nature of the relationship, and 

subsequent analysis shows that results indeed match the trend at large. Finally, a rough outline is 

proposed for how synthetic test cases could benefit from these results both in validating the test cases 

as well as in guiding some elements of their generation. This direction will be pursued in future work. 
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