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SUMMARY 
 
With the advent and subsequent deployment of synchrophasor technology across the transmission 
portion of the grid, the electric utility industry and federal government have made a significant and 
public investment toward a more data-oriented future over the last two decades. We will argue that all 
of the necessary ingredients are now available to leverage the data produced by these new sensors to 
generate far greater ROI than had originally been anticipated.  
 
To unlock the latent value in this data, utilities need the (1) appropriate raw material in the form of 
high quality data, (2) suitable financial motivation to use the data to solve known and unknown 
problems, and (3) capability to realize the use cases in a scalable and cost effective fashion. This paper 
will show that data quality is a readily solvable issue despite having not been adequately addressed. It 
is neither a technology nor an algorithm problem, but appears to be one of organizational will. 
Significant incentive to use PMU and other next generation sensor data exists in many forms. PMU 
data can be leveraged to reduce unnecessary costs for utilities and enhance operational visibility 
without the need for additional investment in equipment and systems. We also note that other industry 
sectors have evolved the state of the art in big data storage and analysis and that the utility industry 
could capitalize on the value that those investments have produced. 
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Introduction 
The phasor representation of current and voltage was first published in 18931. Nearly a century later, 
the phasor measurement unit (PMU) was invented at Virginia Tech and, in 1995, the IEEE published 
the first PMU data specification2.The Department of Energy and the Office of Electricity Delivery and 
Energy Reliability, with the help of the American Recovery and Reinvestment Act of 2009, pushed 
$357 million to the appropriation and deployment of PMUs across the US power grid. From 2009 to 
2015, there number of networked PMUs in the United States of America has grown over 900%, from 
166 to over 1,7003.  
 
While it took two decades for PMUs to go from inception to deployment, the proliferation rate of 
synchrophasors and other next generation sensors on the grid continues to increase for several reasons.  
First, major hardware manufacturers, such as Schweitzer and GE, are embedding synchrophasor-type 
sensing into many standard relay packages and other previously non-instrumented grid components. 
As old equipment is replaced with new, more capable models, the number of sensors on the 
transmission grid has, and will continue to increase regardless of utility intention. Second, while 
synchrophasors have long been associated with the transmission side of the grid, numerous efforts are 
underway to bring micro-synchrophasors or µPMUs with higher-fidelity monitoring to the distribution 
side of the grid4.  Further, numerous other data sources external to utilities have become increasingly 
relevant to optimal grid function. Sources such as the magnetometer data feeds from the United States 
Geological Survey, the planetary K index provided by the Space Weather Prediction Center, and the 
magnetotelluric data provided by Earthscope provide insight into the behavior of the nation’s power 
grid5. 
 
This increase in sensor penetration on the grid has been met with a corresponding increase in academic 
attention. Google Scholar currently reports a total of 5,350 papers with references to synchrophasors 
worldwide.  As shown in the bar chart below, patents and papers have been on a steady increase for 
the past decade as synchrophasor technology matures and manifests itself in different locations within 
the bulk power system, such as relays and intelligent electrical devices (IEDs). 
 

 
 
Similarly, the number of books focused on synchrophasors has seen a corresponding rise; Amazon 
now reports thirty-seven books available on this subject matter. 
 
Given this growth trajectory, it is natural to ask, where is the power industry now? The 1,700 
networked synchrophasors capture a terabyte of data per month describing, in detail, the complex 
behavior of this critical infrastructure that allows our modern society to function. How is this data 
being used? Is it being used? While many would not consider a terabyte “web-scale” data, it is larger 
than the utility industry is accustomed to and taxes the capabilities of current data systems and 
software.  
 
To put this into perspective, Google was integrating over 20 petabytes of data (or 20,000 terabytes) in 
2012 to provide Google Maps as a free service to consumers. Powering Google maps was a wide array 
of data including satellite imagery from government and third party providers, millions of sensors 
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embedded in roads in each state, and video, LIDAR, and 65-megapixel images collected by its Street 
View vehicles6.   
 
Due to its technical and engineering nature, the utility sector as an industry has always embraced data. 
However, if we define the hackneyed term “big data” as data of volume, velocity, and variety that 
exceeds normal capabilities, the utilities seem hesitant to take the next step, even in 2016. In contrast, 
the intrinsic value of big data was being realized and discussed in 2006 by other sectors:  
 

“Data is just like crude. It’s valuable, but if unrefined it cannot really be used. It has to be 

changed into gas, plastic, chemicals, etc. to create a valuable entity that drives profitable 

activity; so must data be broken down, analyzed for it to have value.7”  

 
To unlock the value of the data that PMUs and micro PMUs and other sensors collect, utilities need to 
build applications that leverage this data to solve problems of interest. To enable this capability, there 
are several fundamental requirements. First, to use data, the utilities must have data and the quality of 
the data must be good. Second, the industry must see value in the appropriate use cases that drive the 
development of products or applications. Finally, with sufficient motivation and raw material, utilities 
must have access to the capability to store, understand, and use data at scale. The goal of this paper is 
to provide an overview of these requirements and explore each, demonstrating that the time is ripe for 
data-driven applications to help re-invent the US power grid. 
 
 
1 Raw Material - Data Quality 
Data serves as the raw material needed to build applications. The value that can be created by such 
data-driven applications is a function of the underlying data quality. Data that accurately describes the 
system state can be used to power a wide range of use cases that will be discussed later in this paper. 
At the other end of the spectrum, bad data cannot; as they say in computer science, “garbage in, 
garbage out.” Fortunately for the industry, data does not have to be perfect to be useful but it is critical 
to understand and quantify the errors and issues it contains so that we understand how confident we 
can be in whatever decision is being supported by the data. 
 
Currently, there is a debate to understand how varying levels of data quality impact various 
applications but this effort is somewhat premature. As the United States Supreme Court Justice Potter 
Stewart said about the threshold for obscenity, the same test holds true for data quality. 
 

"I shall not today attempt further to define the kinds of material I understand to be embraced 

within that shorthand description, and perhaps I could never succeed in intelligibly doing so. 

But I know it when I see it, and the motion picture involved in this case is not that." 
 
There is good data and then there is bad data and, based on the current state of data quality in the 
industry, there is little question when data is bad. PMU sensors should not report months of negative, 
identical floating-point values for the magnitude of the voltage phasor on the high side of an energized 
transformer. If so, a data quality problem exists and needs to be resolved.  
 
Beyond not enabling value creation, bad data is an organizational liability. Spending significant 
resources installing PMUs and the data storage systems required to (at least) archive the data and then 
finding the historian contains ten terabytes of bad data is not a best practice in any industry. Worse, 
such behavior could open an awkward line of questioning from regulators, policy makers, or even 
consumers, especially when public funds contributed to the initiative. Once the problems of data 
quality have been addressed, there is an expectation that good data will be used for applications 
beyond archiving. Once the data genie is out of the bottle, the industry will have to advance. 
 
1.1 Wrangling Data Quality 
Data quality can divided into two components: (1) completeness and (2) accuracy. Data completeness 
examines if the expected data is present and answers such questions as whether frames were dropped 
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and did frames arrive with a bad CRC. Data accuracy tests the degree to which the values reflect the 
physical system being measured. For PMU data, this applies to both the time data and the sensor 
measurements including voltage and current magnitudes and angles and frequencies. Such metrics can 
be derived from the header information provided by the IEEE C37.118 specification (the STAT flag in 
particular) or computed from the actual data or a combination of the two. A number of checks exist to 
test PMU data for accuracy including testing for: 
 

• Null Values – “blank” values that were inserted by software. 

• Missing Values – values that were not captured by the sensors and/or the system. 

• Zero Values – while zero is a possible value for measurements, the presence of one or more 
zeroes can indicate bad data. 

• Repeated Values – the probability of seeing two sequential and identical 32-bit or 64-bit 
floating-point values produced by a sensor monitoring a physical process is low so repeated 
values are problematic. 

• Out of Range Values – measurements that are outside the range of possible values as dictated 
by physics. 
Off Normal Values – numbers that are some number of standard deviations above or below a 
running mean or median computed from the last set of samples. 

 
More advanced criteria can be used to identify additional data issues as well.  PMU-based 
measurements can be compared to values from SCADA systems. Statistical patterns in both a single 
time series and across multiple signals can indicate data quality issues. 
 
A variety of products in the marketplace offer different solutions to the issue of data quality assurance. 
Some products are open source and free while others are commercial. Some offer snapshot 
assessments of data quality and others provide continuous, real-time monitoring.  One-off reports can 
provide a snap-shot of data quality that help to identify and locate the initial set of problems that 
plague data quality. However, the grid is dynamic; equipment fails, topologies change, and events 
occur. With near certainty, data quality will fluctuate and bad data will infiltrate the system, impacting 
downstream dependencies. The only way to accommodate this reality and minimize its impact is to 
monitor sensor data quality in real-time.  
 
Real-time applications using data also require data quality to be continuously monitored. In the best 
case, the applications’ underlying algorithms can adapt to differing levels of noise and data drops 
accordingly. If this is not possible, the applications must at least notify the user of the confidence in 
the provided results. Finally, any meaningful solution will not only describe and quantify the current 
issues with data but also help diagnose where the potential problem exists. 
 
 
2 Motivation 

Data will become an asset for the industry once the quality issue is solved. As sensor measurements 
are just another type of data, collecting power grid data is comparable to accruing assets. With enough 
measurements, an organization enters “big data” territory. The three defining characteristics of big 
data are the three V’s - Volume, Velocity, and Variety.  
 

1. Volume - the amount of data as measured in bytes, with terms such as Exabyte 
(1,000,000,000,000,000,000 bytes or 1018 bytes) entering the vernacular.  

2. Velocity - the rate at which new data is created. This aspect is particularly relevant to utilities 
as next generation PMUs move from 30Hz to 60Hz, 120Hz, or 240Hz sampling and beyond.  

3. Variety - data comes in many forms beyond what can easily be stored in a spreadsheet, 
including video, audio, and natural language. 
 

Some add Veracity as the fourth “V,” which partially refers to data quality. 
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While “big” data is large in amount, size is relative to the available tool and skill sets. The term “big 
data” has resonated with society because data has become a “big” deal. Where scientists and engineers 
have long known that data was useful, the rest of the world has realized that data can create many 
types of value—financial, environmental, and social value—and the only V that matters is “Value.” 
 
2.1 Value Creation 

Data can be used to quantify aspects of the real world, creating highly detailed models capable of 
producing insights, understandings, or predictions of the past, present, or future behaviors, 
respectively, of the system. These views create increasing value, as shown in the figure below as a 
function of cost. 

 

 
 
The first wave of data-driven applications tend to focus on the past, exploring and understanding 
events that have already impacted the system. Utilities are no stranger to forensic event analysis and 
understand the associated value proposition. Studies have shown that PMU data can accelerate these 
investigations, shrinking the time required from months to weeks, reducing the associated costs and 
resources consumed8. The southwest blackout in 2011 was one of the first examples where 
synchrophasor data was used to determine the cause of the outage. From a technical standpoint, this is 
the easiest time period to address given data of sufficient quality has been archived.  
 
The contemporary control room is an excellent example of a data application that describe the present 
system state. Such applications often require large volumes of data be compressed and summarized for 
human consumption and response. To date, control rooms are dominated by data from SCADA 
systems. 
 
The most value can be created by focusing on the prediction and prescription of the future as shown in 
the right most shaded regions of the figure above and this is where PMU data will shine.  
Undiscovered patterns predictive of crucial system behaviors are much more likely to be discovered in 
PMU data, where the actual behavior of the system is being record 30 to 60 times a second, than in 
SCADA data, with sensor measurements once every few seconds.  It is clear that prescient knowledge 
about asset condition or imminent failure is worth billions of dollars to the utility industry.  
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When discussing value creation from data, there exists a large difference between traditional reporting 
methodologies and real time data-driven applications. Reports are a familiar product that are also built 
from data; data that has been collected is collapsed into meaningful prose and visualizations to convey 
a message from one person or group to another.  Typically, each stage of the process is manual and the 
end result is static. Academic journal articles are another such example of traditional reporting. Data-
driven applications lay at the other end of the spectrum of scalability. In the data-driven application, 
the result or conclusion is repeatedly created on demand via an automated system. Compared to the 
traditional report, all steps that were required to generate results now live within computer code with 
all data sources programmatically accessible.  
 
 
2.2 Use Cases of Interest 

Legitimate use cases for data must be found to justify the cost of building data-driven applications. 
Fortunately, the majority of the expense for data-driven applications is the deployment of the sensor 
system and the collection of the data; leveraging the existing data is at least an order of magnitude less 
costly. As an example, we look at the Waze navigation application for smartphones. With $67 million 
in investment, Waze built the data infrastructure and analytics to manage an ad-hoc network of 50 
million sensors reporting continuous traffic data, whereas the sensors themselves (smartphones) had a 
combined value of nearly ten billion US dollars. 
  
Some use cases for data are apparent before any data is collected and some become apparent once the 
data is available. Model validation is an example of the former. It is clear that the 30 Hz-sampled 
PMU data provides more temporal information than existing SCADA systems and can help improve 
the accuracy of system models. Additional often-cited uses cases for PMU data that form the basis for 
data-driven applications include:  
 

• Wide area situational awareness 

• Phase angle monitoring 

• Real-time visualization 

• Operator training and event simulation 

• Forensic event analysis 

• Oscillation detection  

• Voltage stability monitoring and management9. 
 
Once data is available, additional use cases become apparent. PMU data offers a second source of 
“truth” for the current operational state of the grid. As a result, this data can be used for cyber security 
applications to detect external control and operation of critical assets. Second, PMU data can capture 
very rapid transients on the grid thereby identifying and verifying the operation of switches and 
breakers (independent confirmation of what is seen by SCADA).  
 
However, the most interesting and valuable use cases for data are often those that cannot be clearly 
discerned at the time of data collection (or when the collection was first conceived). As an example, 
consider Netflix, now the movie and television streaming service. Founded in August 1997, Netflix 
launched its DVD by mail service in April of the following year10. It became apparent that the 
economics of the business model did not work; the newest DVD releases, which were the least cost 
effective, were the only movies customers selected. In 1999, Netflix started repurposing previously 
collected data from customers—movie ratings—and an understanding of each movie’s content to 
provide individualized content recommendations for each user. This was possible using a number of 
data science techniques such as collaborative filtering and grew into the company’s proprietary 
Cinematch algorithm. Netflix’s recommendations successfully drove customers to DVDs other than 
new releases, increasing profitability. This aspect of the business has become so crucial that Netflix’s 
annual spend on content discovery exceeded $150M annually in 201411. Netflix has taken this 
quantified understanding of customer preferences and used it to construct new content, such as “House 
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of Cards,” moving from predicting individual customer desires to prescribing hits shows for an entire 
population12. 
 
As an unexpected use case that could be addressed with PMU data, PingThings demonstrated last year 
that the reactive power consumed by an auto transformer during a geo-magnetic disturbance could be 
determined from PMU data. This simply was not possible using SCADA data; although GIC’s are 
considered quasi-DC currents, the causal geo-magnetic disturbances often manifest fast and large 
transient behavior that would be missed by SCADA. This creates the very real possibility of 
monitoring the power grid for geomagnetically induced currents without the need for installing costly 
sensors but by leveraging PMUs. 
 
Beyond unexpected use cases, utilities are faced with additional challenges, such as the need to 
improve operational and capital costs, facilitate intermittent renewables, and meet more stringent 
reliability standards in the face of disruptive loads and changing weather patterns. To that end, utilities 
are becoming interested in applying cross-departmental approaches to gathering information to 
develop a more holistic asset management and condition monitoring (AMCM) strategy. These 
approaches entail a better understanding of asset states and using this knowledge to develop a 
predictive risk-based management strategy—as opposed to responsive. According to Navigant 
Research, global revenue for power AMCM devices and solutions is expected to grow from $2.6 
billion in 2016 to $6.5 billion in 2025. 
 
 
3 Capability - Ability to Access and Use Big Data 
While successful data capture and storage are the first steps to creating data-driven applications, they 
are not the last.  To create new value, utilities and utility partners must be able to access and use the 
PMU data. For traditional analyses, this often requires the utility to provide a data “dump” to a third 
party. Current industry data systems, built on older, relational database technology, cannot suitably 
handle this simple requirement. Anecdotal information suggests that exporting a month of PMU data 
can take a week or more.  
 
If the utility wants to prototype, build, test, and deploy data-driven applications, the requirements for 
the underlying data storage systems increases significantly beyond current solutions. Further, 
synchrophasors generate more data than can be comprehended by humans, either in real-time or 
retrospectively. Big data by itself lacks value without the approaches necessary to use it and that 
critical approach is machine learning. Machine learning offers a fundamental paradigm shift for 
computing. Previous models of programming had humans craft instructions so that computers could 
execute tasks. In machine learning, the data actually programs the computer to achieve the desired 
outcome. Thus, all PMU data streaming into phasor data concentrators is not a cost center or burden 
but an opportunity. This data can be used to train computers to identify events of interest to a utility 
and much more. 
 
To do this requires data storage and software frameworks for processing data at scale and while 
streaming. Fortunately for the power industry, other industries have advanced related technologies 
making these requirements possible and both the hardware and software costs have rapidly plummeted 
over the last two decades. 
 
 
3.1 Moore’s Law 
Gordon Moore, one of the co-founders of Intel, observed that the number of components per 
integrated chip would double every year in an appropriately titled magazine article: Cramming more 
components onto integrated circuits. This doubling of component density has allowed processors to 
double in performance approximately every two years for the last half century, enabling everything 
from the Internet to smartphones13. 
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From the electric utility’s perspective, Moore’s law has unlocked incredible computational 
possibilities at exponentially decreasing cost. The chart below compares this decrease in cost for three 
key computer characteristics: processing power, memory size, and non-volatile storage size.  
 

 
 
The cost of the microprocessor’s computing power has dropped by 1.4 million times. The cost of main 
memory has decreased by a factor of 6,400 and the cost of permanent storage has fallen by a factor of 
1.5 million. 
 
To put these numbers in perspective, it is now possible to purchase enough system memory (RAM) to 
hold a month of data from every PMU in North America for approximately $10,000. In comparison, 
the world’s fastest supercomputer in 1995, Fujitsu’s Numerical Wind Tunnel, did not have this much 
main memory14. Further emphasizing this point, consumer game consoles available today have 
sufficient hard drive storage space to archive several months of PMU data for the United States of 
America. These hardware cost decreases are available to utilities both as hardware systems installed 
locally and via externally managed Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service 
(PaaS) cloud solutions. 
 
 

3.2 The Evolution of Big Data Software 
While Moore’s law enabled the hardware foundation needed for handling big data to be built, the open 
source software community kept pace and built a vast ecosystem of software for both data storage and 
analysis at scale over the last two decades. The seminal flow of big data-related papers from Google 
provides an overview of this rapid evolution. From this stream, one can see the sequence of big data 
challenges that Google faced and the technical approaches used to surmount them.  
 
Starting in 2003, Google implemented a distributed file system (GFS) and a software infrastructure 
(MapReduce, the basis for Hadoop) to process data spread across thousands or millions of commodity, 
inexpensive computer hardware with relative transparency to the end user15, 16. This approach enabled 
orders of magnitude cost reductions when processing massive amounts of data.  Per a conversation 
with a former Google VP, any software engineer at Google could run a job across 50,000 machines 
without manager approval in 2007. 
 
Next, Google describes how it created numerous data storage and processing systems to handle 
different types of data – structured, unstructured, graph, and even globally distributed yet 
synchronized database – at Internet-scale17, 18, 19. The key to this innovation is that instead of requiring 
larger, more expensive hardware to handle more data as was the paradigm at the time, these systems 
could accommodate more by horizontally scaling across additional machines. This, again, radically 
changed the cost curve for handling big data. 
 
Finally, Google discusses its framework and processing model for streaming computations at scale20. 
Historically, most data analyses were done on finite or bounded data sets. For example, a utility 
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exports a large csv file containing PMU data that can be loaded in Excel for an academic project. Even 
in older big data processing frameworks like Hadoop, processing is done in batches, on finite chunks 
of data. In the real world, many data sets are infinite with new data constantly arriving. This is 
especially true for utilities and other industries where sensor data is continuously generated. Google’s 
dataflow framework analyzes and processes data streams with the assumption that new data will 
always arrive, that old data may be retracted, and that batch data processing is just a special case. 
 
Where Google has led the way, open source software solutions have followed. Today, there is a rich 
ecosystem available that can accommodate the utilities’ big data needs and this software can be freely 
downloaded and used. Just as Moore’s Law has helped hardware costs drop exponentially, we have 
seen even more radical cost reductions in the big data software space.  However, these technologies 
represent a departure from the utility industry’s customary methodologies and also require a different 
mentality and skill set.  Further, the big data software revolution has occurred on open source 
operating systems, primarily different flavors of Linux, and is not Microsoft Windows compatible.  
 
 
Conclusion 

The electric utility industry has made a significant and public investment in the deployment of PMUs. 
All of the necessary ingredients are available to leverage this data to produce far greater ROI than had 
originally been anticipated. Data quality is a solvable issue; it is neither a technology nor an algorithm 
problem, but one of organizational will. Further, significant motivation exists in many forms. PMU 
data can be used to reduce unnecessary costs for utilities and even previously unknown use cases such 
as GMD monitoring, are possible. Finally, other industries have evolved the state of the art in 
distributed compute and storage systems to surpass the current needs of the utility industry. 
 
Some may say that data quality is a catch 22 for the industry. Without obvious benefits, there are no 
reasons to resolve data quality problems but, without good data, it is not possible to build applications 
that solve relevant issues. This is incorrect. Let’s for a moment, ignore the current PMU application 
areas. Let’s also ignore the tantalizing prospects of unsolved but valuable contributions to grid 
reliability that could be made. Finally, let’s forget that the most valuable use cases for next generation 
sensor data have probably not even been conceived of yet. There is still the issue of liability. Data, on 
its own, is a liability; if it is not cleaned and used, then utilities open themselves to uncomfortable 
questions from regulators, policy makers, and the general public. 
 
While this paper focused primarily on PMU data-driven applications, there is no reason to limit 
ourselves to just synchrophasors. Phasors approximate the waveform being measured. Internally, 
PMUs are sampling the waveform several dozen times per cycle to extrapolate a simplified model of 
the current and voltage waveforms. From a data perspective, this represents an order of magnitude 
down sampling of the original data. The relevant question is why? Why not just sample current and 
voltage waveforms directly at several kilohertz. This is already done by the Digital Fault Recorder 
(DFR), which samples up to 10 KHz when a particular threshold is exceeded or condition is met. In 
current devices, only a very brief time period of data is captured due to the relatively high data rate. 
However, this is a technical limitation only. Despite being historically cost prohibitive, the ability to 
store, analyze, and use this volume of data is now possible. 
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