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SUMMARY 
 

An accurate forecast of the power system component outages during extreme events is an 

essential task to improve pre-event system preparedness and post-event system recovery and 

accordingly minimize the undesired aftermath of these events. A machine learning method, 

based on Support Vector Machines (SVM), is proposed in this paper as a viable approach to 

forecast the components which can potentially fail during an anticipated extreme event. In 

particular, a cubic kernel SVM is proposed to classify between operational and damaged 

components after the extreme event based on the event characteristics. The extreme event can 

be of the nature of a weather event or a natural disaster, where in either case the proposed 

approach is capable of developing suitable prediction models. The proposed method can be 

trained on historical data of the past extreme events. The performance of the proposed method 

in effectively predicting potential component outages is validated using two defined metrics, 

namely precision and recall. Numerical studies indicate that the proposed method can be used 

to effectively predict the outages.  
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1. INTRODUCTION 
 

Extreme events, such as hurricanes, snowstorms, floods, earthquakes, etc., cause outages in 

critical lifeline systems and result in inconvenience for residents living in disaster areas [1]. 

The electricity infrastructure, as a critical lifeline system, which is spread over wide 

geographical areas to transfer bulk power from centralized power plants to distributed load 

centres, is not an exception to this impact. Considering the large impacts of extreme events on 

electric power systems, including local and national losses in range of billions of dollars every 

year [2], a viable prediction, response, and recovery is of significant importance. In other 

words, the power system needs to become more resilient in response to these events. The 

concept of resilience in power systems, initially introduced in [3], determines the resistance of 

the power grid and its ability to withstand extreme changes. Power system resilience has 

turned into a progressively essential affair as the frequency and the intensity of extreme 

whether events have significantly grown in recent years. The considerable consequences of 

extreme events on the electricity infrastructure, which is spread over a broad geographical 

area and hence vulnerable to be largely impacted, shows the value and importance of an 

efficient forecasting of the potential damages to power system components which would 

accordingly enable efficient response and recovery schemes.  

 

Traditionally, the power system component outages were predicted holistically (i.e. at the 

system level but not at the component level) or were estimated using probabilistic approaches 

following a predefined probability distribution function [4, 5]. These methods suffer from 

several drawbacks, in which the holistic methods are not useful in managing the grid 

components and the probabilistic methods may not be accurate and could further vary for 

different regions and events. Machine learning approaches, on the other hand, have shown a 

great performance on learning from and making predictions on existing data. These 

approaches build a model from an example training set of observations without explicitly 

defining the probabilistic model, and predict data-driven decisions as outputs. One of the 

challenges in machine learning approaches is to have adequate number of samples for training 

to extract necessary features to train the model. As for extreme events, these data can be 

easily derived from past events.  

 

In this paper, a machine learning method is proposed to determine the power system 

component outages in response to an anticipated extreme event. The rest of the paper is 

organized as follows: Section 2 presents the problem statement and proposes the machine 

learning method for outage prediction; Section 3 presents simulation results on a test system; 

and Section 4 concludes the paper.  

 

 

2. MACHINE LEARNING METHOD FOR OUTAGE PREDICTION  
 

The state of each component in the power system in the path of an upcoming hurricane can be 

considered as (a) damaged, which means the component is on outage, or (b) operational, 

which means the component is in service. The path and the intensity of the hurricane can be 

anticipated from weather agencies. In order to classify the damage state of the power system 

components, different features can be extracted from historical data. In this paper, we explore 

two main features of the wind speed and the distance of the each component from the center 

of the hurricane. A Support Vector Machine (SVM) [6] is used for this purpose and to further 

determine the decision boundary between the damaged and operational data points. 
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Given a set of training examples, an SVM classifies them into two classes by finding the best 

hyperplane that separates training examples of one class from the other class. The best 

hyperplane is defined as the hyperplane with a clear gap that is as wide as possible. Figure 1 

shows the support vectors and optimal hyperplane in a separable two class classification of 

SVM.  

 

 
Figure 1. Support vectors and optimal margin in SVM 

 

The data for training is a set of points xi (xi ϵ RD) along with their categories yi (yi = ±1), the 

classification task can be written as: 
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where w is the normal vector to the hyperplane separating training examples, |b|/||w|| is the 

perpendicular distance from the hyperplane to the origin, and sgn is the sign function, i.e., 

sgn(z) = 1 if z ≥ 0, and sgn(z) = −1 otherwise. h(x) is the output of the classifier with the aim 

of h(xi)=1 if yi=+1 and h(xi)= −1 otherwise. We can then define a large functional margin that 

representing a confident prediction as:  
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We can define geometric margin (shown in Figure 1) as:  
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Given a training set S = {(xi, yi); i=1,…,m}, the geometry margin of the decision hyperplane 

(w,b) with respect to S is defined to be the smallest functional margins of individual training 

examples, as: 
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Sine we are maximizing the functional margin of the decision hyperplane (w,b), we can 

maximize the geometry margin (as it is scale invariant), while minimizing ||w||2. Then, the 

optimal hyperplane parameters (w,b) can be found by optimization problem: 
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This is a quadratic programming problem, which can be solved by a Lagrange duality. 

Solving the duality, the final hyperplane only depends on the support vectors (i.e., samples 

points that are in the margin) and SVM needs to find only the inner products between the test 

samples and the support vectors (of which there is often only a small number).  

 

In case that the training data cannot be separated by a hyperplane (which commonly happen, 

especially in case of the hurricane data), SVM can use a soft margin. This can be solved by a 

penalty parameter c and a regularization (often L1 or L2) as follows:  
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In other words, training examples can have a margin less than one, and if an example has 

functional margin 1-εi (with εi >0), the objective function is increased by cεi. Finding a proper 

value of c depends on the shape of classes, which are often unknown. Therefore, c is often 

found by testing the performance of the classifier on a validation set. 

 

The idea of maximum-margin hyperplane, which is discussed above, is based on the 

assumption that training data are linearly separable, which is not the case in many practical 

applications. In order to apply SVM to nonlinear data, kernel methods [6] can be used. The 

idea of kernel method (kernel trick) is to map input features to higher demotions that can be 

linearly separable and fit the maximum-margin hyperplane in the transformed feature space. 

Kernel trick simply states that for all x1 and x2 in the input space X, a certain function k(x1,x2) 

can be replaced as inner product of x1 and x2 in another space. For example a polynomial 

kernel can be defined as: 
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Training samples may still be non-linearly separable in the transformed feature space. 

Therefore, multiple SVM are trained with various kinds of kernels (e.g. polynomial with 

different degrees, Gaussian, etc.) and the best kernel is found imperially from the result on a 

validation set. The role of the penalty parameter can be also important in finding the best 

setting for the problem.   

 

To evaluate the performance of the classifier, usually a subset of historical data is reserved as 

the validation/test set. Reporting the general accuracy of prediction cannot be sufficient as 
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number of samples may not balance in the test set. The F1-Score is a common and reliable 

measure of classification performance [7] which will be tested on the test historical data: 
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where P and R represent precision and recall metrics, respectively. Precision is defined as the 

number of correctly predicted outages divided by the total number of predicted outages, and 

the recall is defined as the number of correctly predicted outages divided by the total number 

of actual outages. Precision can be seen as a measure of a classifier exactness and recall can 

be thought of as a classifiers completeness. A higher value of the F1-Score, which is a number 

between 0 and 1, indicates a better forecasting and justifies the viable performance of the 

existing decision boundary. 

 

 

3. CASE STUDY 
 

As historical data for the past extreme events at component level are limited, we have 

generated 300 samples of each component state following a normal distribution function with 

a small Gaussian noise so that the data can be distinguishable. The samples belong to two 

classes of components with high probability of failure and components that can survive the 

extreme event. The features are normalized to [0, 1] based on the maximum considered values 

of wind speed and distance. These samples are shown in Figure 2. 

 
Figure 2. Generated samples for two different classes 

 

A k-fold cross validation (k=5) is performed to measure the performance of the proposed 

method, where the generated data is split into training and validation subsets. During the 

training of the system, the SVM model is only trained on the training subset and validated on 

the subset that is not trained on. Different kernels (linear, polynomial Quadratic and Cubic) 

with different range of penalty parameter (c=0.01, 0.1, 1, 10, 100) are trained. Among the 

trained SVM, polynomial Cubic kernel with c=1 had the best overall classification accuracy 

on the 5 fold of validation set. The final result is the average accuracy over all k folds. The 

average overall classification accuracy of the proposed classification model is 96.0% with the 

average F1-Score of 95.97% for predicting outage. Table 1 shows the confusion matrix of 
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classifying components into two classes of outage (having high probability of failure) and 

normal condition based on the distance to the center of extreme event and the wind speed that 

they can withstand. As observed, the proposed method can classify the outage components 

from normal condition with high accuracy. The proposed model is a general framework that 

can be improved by extracting more features (i.e. different types of components, etc.) and can 

be easily adopted to historical data if the component-level outage data are available.  

 
Table 1. Confusion Matrix of classifying system component during extreme event 

 

 Predicted 
Normal Outage 

A
ct

u
a

l Normal 96.7%          3.3% 

Outage 4.7 %         95.3% 

 

 

4. CONCLUSION 
 

Predicting power system outages at the component level is an important factor in scheduling 

power system response and recovery against extreme events. In this paper, a machine learning 

based outage prediction model was proposed to determine the probable outage of power 

system components based on historical event data and specific event characteristics. A case 

study on synthetically generated data showed that the proposed model can effectively predict 

outages while offering a great generalization capacity for new samples in the test subset. The 

generated data was aimed to study the effect of hurricanes on the system, but the proposed 

model is applicable to a variety of extreme events, and also able to consider a wide range of 

other features in addition to hurricane speed and component distance.  
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