Applying Substation Linear State Estimator to Instrument Transformer Health Monitoring and Management: Roadmap

CIGRE 2016 Grid of the Future Symposium 10/31/2016 Author: Tao Yang

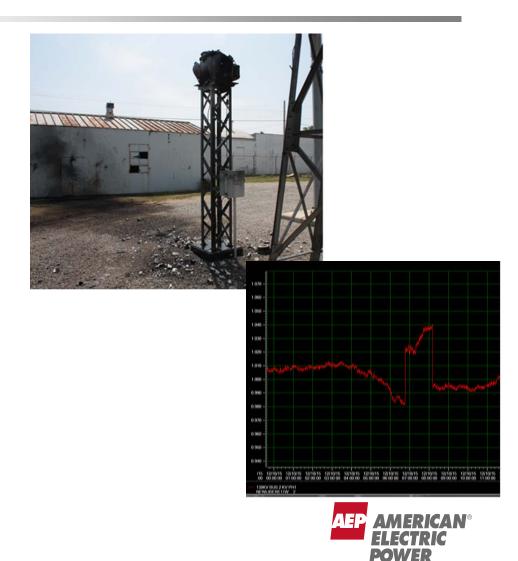
> Presented by: Carlos J. Casablanca, AEP

Executive Summary

- Instrument Transformers (ITs) and Intelligent Electronic Devices (IEDs) are critical in day-to-day power system operation
- AEP proposes a roadmap to establish continuous IT & IED output monitoring at the station level using Synchrophasor-based Substation Linear State Estimator (SLSE) technology to asses the "health" of these devices
- The system envisioned would help prevent equipment failures, relay miss-operation, forced outages, and improve employee safety

Background

- AEP exploring and implementing technologies for Asset Health Monitoring
 - Transition to condition based maintenance
 - Anticipate equipment failures and avoid their associated risks and costs
- Monitoring programs for major (\$) assets underway
 - Transformers and Circuit Breakers
- Exploring cost-effective solutions for lower \$ assets that can affect system reliability as much or more than bigger \$ assets
 - ITs and IEDs/Relays


ITs and IEDs

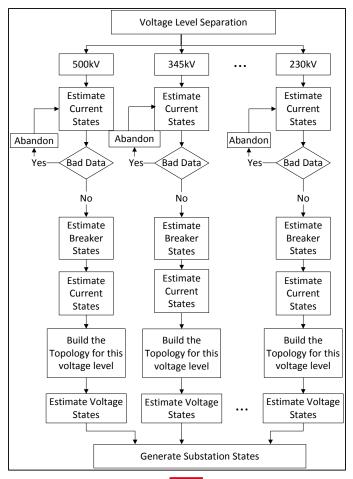
- Instrument Transformers (ITs)
 - Devices used to capture the voltage and current flowing through different paths in a station
 - Coupling Capacitor Voltage Transformers (CCVTs), Potential Transformers (PTs), Current Transformers (CTs)
 - Many of them located throughout a station
 - Measure at full scale and step-down to a level IEDs can accept
- Intelligent Electronic Devices (IEDs)
 - Receive voltage and current inputs from ITs
 - Process these inputs to serve multiple functions
 - Protection, Monitoring, Alarming
 - Can be end-user configured or programmed

Problem Indicators

- Physical
 - Leakage of insulating medium (oil or gas)
 - Violent destruction
 - No apparent issue
- Virtual
 - Intermittent or chaotic signals or outputs
 - Expected output signals deviate vs reference signals

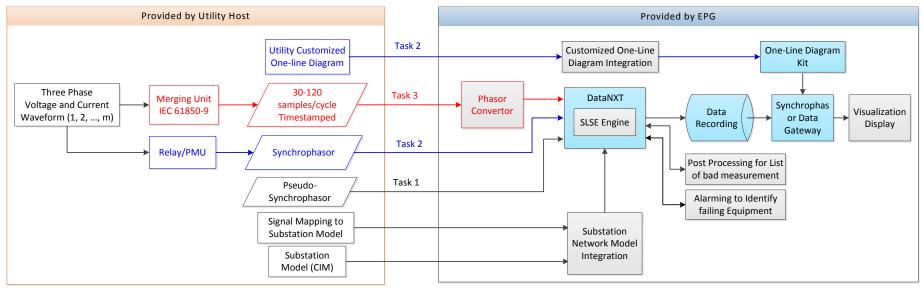
Failure Detection Methods

- Cross checking primary and backup IT outputs for deviation vs one-another
 - Requires additional work to determine which one is the "bad one"
- Reviewing IT outputs to identify step changes
 - Requires additional work to determine if it is truly an instrument issue or a system perturbation
- IED internal alarming functions
 - Can generate too many notices
- After an event occurs, investigating miss-operation or non-operation of IEDs
 - Too Late


Proposed Approach

- A Synchrophasor-based Substation Linear State Estimator (SLSE)
 - Requires time-synchronized measurements and large amount of local measurements to meet observability requirement
- Key Advantages
 - Detects and identifies the specific component with the issue
 - Automatically accounts for measurements taken during power system perturbations

How It Would Work


- Pre-requisites
 - Each station voltage level is handled separately
 - Current and voltage handled separately
- Steps
 - Station current state estimation
 - Verify circuit breaker statuses
 - Station topology is defined
 - Voltage state estimation
 - Calculated substation states and station topology feed a "bad data" processor

Implementation Roadmap

Working with Electric Power Group (ePG) to implement

From Utility	EPG	To be
Host	Component	developed

Next Steps

- Pending notification from DOE on FOA proposal related to "Synchrophasor Applications and Tools for Reliability and Asset Management"
 - Develop, pilot, and implement commercially the concept outlined in the paper
- Integration of this tool into AEP's existing Asset Health Center platform

QUESTIONS?

11