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SUMMARY 
 
This paper looks at the application of situational awareness methodologies with respect to power grid 

data.  These methodologies establish baselines that look for typical patterns and atypical behavior in 

the data.  The objectives of the baselining analyses are to provide: real-time analytics, the capability to 

look at historical trends and events, and reliable predictions of the near future state of the grid.   

 

Multivariate algorithms were created to establish normal baseline behavior and then score each 

moment in time according to its variance from the baseline.  Detailed multivariate analytical 

techniques are described in this paper that produced ways to identify typical patterns and atypical 

behavior.  In this case, atypical behavior is behavior that is unenvisioned.  Visualizations were also 

produced to help explain the behavior that was identified mathematically.  Examples are shown to help 

describe how to read and interpret the analyses and visualizations. 

 

Preliminary work has been performed on PMU data sets from BPA (Bonneville Power 

Administration) and EI (Eastern Interconnect).  Actual results are not fully shown here because of 

confidentiality issues.  Comparisons between atypical events found mathematically and actual events 

showed that many of the actual events are also atypical events; however there are many atypical events 

that do not correlate to any actual events.  Additional work needs to be done to help classify the 

atypical events into actual events, so that the importance of the events can be better understood.   
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INTRODUCTION 

 
“Situational Awareness” is the process of understanding the elements in a complex system, discerning 

how they behave with changes to the system (i.e. over time), and projecting their status as these 

changes occur.  Advanced statistical and mathematical algorithms can be applied to complex system 

data to help provide insight into the situational awareness of the system.  This research looks at ways 

to build algorithms around power grid related data, to help provide the system engineers with an 

awareness of grid behavior.  This research has been focused on two areas: 1) establishing a baseline of 

what is “normal” grid behavior, and 2) identifying unenvisioned anomalies within the power grid. 

 

The recent increase in the deployment of high-speed time-synchronized measurements including 

Phasor Measurement Units (PMUs) provides a great challenge and opportunity to the power grid 

community.  One significant challenge is in handling the substantial amounts of data, cleaning that 

data, and then creating insightful analyses and displays.  There is great opportunity to provide system 

engineers real-time tools that increase their understanding of the current state of the grid and 

predictions of future grid behavior.   

 

This paper looks at the application of situational awareness methodologies with respect to power grid 

data.  These methodologies establish baselines that look for typical patterns and atypical behavior in 

the data.  The objectives of these baselining analyses are to provide:  

• near real-time analytics,  

• capability to look at historical trends and events, and  

• reliable predictions of the near future state of the grid.   

This paper focuses on the first two objectives, while providing tools to start understanding how current 

data can help predict future behavior. 

 

Analyses in this paper were performed using PMU data for baselining tasks for BPA (Bonneville 

Power Administration) and the Eastern Interconnect (EI).  Over a year of PMU data were analyzed 

from BPA, consisting of voltages, currents, phase angles, and frequencies.  This data was measured 

providing 60 samples per second and was taken from over 50 PMUs.  Two sets of two month data 

were also studied from the EI.  This data consisted of phase angles, so the analysis focus was 

concerning phase angle pairs.  This data was summarized in 1 sample per second rate and was taken 

from over 30 locations across the Eastern Interconnect.   

 

METHODOLOGY 

It is common within complex systems to establish rules to alert system engineers when certain 

behavior occurs.  These rules are criteria that have been predetermined and envisioned by system 

engineers.  An example rule would be providing an alert when power grid frequency exceeds a certain 

limit, like 61 Hz.  These alerts are a simple way to provide a real-time check of a complex system for 

phenomena that has already been envisioned.  While this approach has tremendous value, it also has 

the potential to miss abnormal phenomena or events that have not been envisioned.  Advanced 

statistical and mathematical algorithms can provide additional situational awareness tools that look for 

patterns in the data and find unenvisioned phenomena.  This section details the algorithms used to 

discover patterns and find atypical events.   

The first step in analyzing data is to extract features from the data that will provide insight into the 

state of the system.  These features are extracted from each relevant variable.  These features make up 

a mathematical signature which provides a summary of the important aspects of the system and these 

signatures are used in the analyses.  The signature used in these analyses was determined by fitting the 

following regression equation across a moving window of data for each variable:   
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where y is the actual data within the window; x is time; a is the y-intercept, representing the mean 

across the window; b is the slope, or rate of change; c is the quadratic, or rate of rate of change; and ε 

is the error, or lack of fit of the data to the regression equation.  This equation is fit for a window of 

data of a certain size (one second or one minute).  The window is then moved a certain amount of time 

forward (in this case one second) and the equation fit again.  In each case, the a, b, c, and ε are 

calculated and stored.  This continues across all the data for each variable.   

This signature calculation results in the extraction of the following features for each given variable at a 

specific time –  

• the magnitude of the actual data values, represented by a; 

• the rate of change of the data, or slope (first derivative), represented by b; 

• the rate of rate of change, or acceleration (second derivative), represented by c; and 

• the amount of error in the fit of the data to the equation, represented by ε. 

Each of these signature elements provides insight into a different aspect of the data.  These signature 

elements can then be aggregated (summarized) across a certain amount of time (in this case every 

minute or every hour).  This aggregation is done by calculating the mean, minimum, maximum, and 

standard deviation of each signature element.  This resulted in 16 signature elements calculated for 

each specified moment in time.  These signature elements can then be included in all analyses 

concerning the data, especially those analyses looking for typical patterns in the data, or atypical 

events.  Amidan and Ferryman (2005) provide more detailed instructions into the calculation of this 

signature [1].   

Each signature element provides different insight into the state of the system at a given time.  For 

example, the element amean provides a view of the average magnitude of the data values.  The element 

astdev provides insight into the variability in the magnitude of the data values.  The element bmean 

provides the average rate of change, while the bstdev provides the variability within the rate of change.  

When analyzing the data, it is important to note which signature elements are needed to provide the 

desired feedback.  If an analyst is interested in exploring aspects about how the variables are changing 

over time, they may want to use the bmean element and possibly the astdev element.  If they are just 

interested in analyzing the actual values (magnitudes) of the data, they may want to use amean.  If they 

want to explore all the aspects of the signature, they may include all elements.  

After the mathematical signatures are calculated, then analyses can be performed.  The rest of this 

section is focused on a multivariate approach in determining patterns and looking for anomalies, or 

atypical events, in the data.  The first step is to decide which data to perform the analysis on.  This 

includes selecting the time period, the variables or variable types, and the signature elements.   

Once the data is selected, then a data reduction algorithm is performed.  A common method to do this 

is principal component analysis (Rencher, 1995) [2].  The purpose of this step is to reduce the number 

of variables in the analysis to a set of unique, uncorrelated variables.  This is necessary because many 

of the variables are highly correlated.  Including multiple variables that are related to a certain 

characteristic in the data will weight that characteristic too heavily in the analysis.  Principal 

component analysis removes this issue by creating linear combinations of the variables that result in 

orthogonal variables, which are not correlated.  The number of components that explained at least 90% 

of the total variation was retained. 

A non-supervised clustering algorithm is then applied to the reduced data. Non-supervised clustering 

is used as there are no targeted groupings of the data.  There are many clustering algorithms to choose 

from.  In this case, k-means is applied, though any clustering algorithm may be applied.  Clustering 

uses multivariate distances within the data to determine which data points are similar.  Similar data 

points (in this case a data point is each specific minute) form a cluster, or group.  Each group 

represents a certain state that the system is in. These represent the common patterns that are in the 

selected data. 
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Another analysis of the data is the calculation of the global atypicality score (G).  A large score 

indicates the data point (in this case each minute of time) is unusual, or atypical.  A score closer to 

zero indicates a typical or normal data point.  Cluster membership is one of two parts included in the 

global atypicality score.  The other part of the global atypicality score is the distance that the data 

point is from the center of all the data points.  These components help calculate the global atypicality 

score for each data point (in our case, every minute) where the score is always positive, with larger 

scores meaning more atypical.  Global atypicality scores usually range between 0 and 25.  Further 

detail concerning the global atypicality score calculations can be found in Amidan and Ferryman 

(2005) [1]. 

 

RESULTS 
 

This section discusses the type of results that can be found.  The actual timeframe of these results has 

been removed to keep the events de-identified and confidential.  These results are only presented to 

help the reader visualize and understand what can be done.  The actual events and happenings found 

using these analytical techniques are not the focus of this paper.   

 

One way that clustering can be informative is by comparing what items group together during one 

timeframe to the groupings that occur during a different timeframe.  These types of investigations can 

help detect shifts in the typical patterns.  Figure 1 shows cluster trees from two different time periods 

for phase angle pairs on the Eastern Interconnect.  Pairs that are connected further down the tree are 

more similar.  It is interesting to note that in the top time period the CantonCenter-Alburtis and 

JacksonsFerry-Alburtis angle pairs are very similar; however in the bottom time period the angle pairs 

are not at all similar.  In this case, clustering was helpful in identifying unusual pattern changes.  

Further research can be done to determine why this was occurred.   

 

Another way clustering can be helpful is in determining possible phase angle pairs that should be 

studied and analyzed.  With hundreds of phase angles possible in a given footprint, there can be 

millions of pairs that could be studied.  Clustering can be used to help determine which angles are 

similar, so that only one exemplar angle pair is included from each cluster.  

 

In order to find unusual events in data, the atypicality score is calculated.  Figure 2 shows a sample of 

atypicality scores calculated over a period of time within the BPA data set. In this case, 6 different 

atypicality scores were calculated (each represented by a different color), each score representing a 

different subset of data that is being studied.  As can be seen from the scores in Figure 2, there is a 

spike in the scores at 19:30.  This indicates that something unusual happened during that time.   

 

By looking at the atypicality score in Figure 2, it is not possible to discover what is unusual, only that 

something unusual has occurred.  Drill down graphics are necessary to help pinpoint what issues might 

be occurring.  The first drill down graphic is called the rationale and an example rationale is given in 

Figure 3.  The rationale includes a listing of all the variables that are univariately unusual and an 

explanation of how each is unusual with respect to the atypicality score in Figure 2.  The rationale is 

written in sentence form and makes up a paragraph.  For example, in Figure 3 the first sentence is 

KEEL230.A2SA.freq value (mean 59.89) is very low.  This is when that particular variable value is 

compared to all the values that this variable has had during the time period being evaluated.   

 

In our software tool, the variable names in the rationale are links which lead to plots called 

performance envelopes.  Figure 4 is an example of a performance envelope plot.  This plot consists of 

a gray area that shows the likelihood that the variable of interest will have that value during that time 

of day during that month.  This is called the performance envelope and it shows the typical values of 

that variable given the time of day.  The orange line plot shows the actual values the variable had 

previous, during, and immediately after the atypical time period.  In Figure 4, the frequency variable 

of interest shows a dramatic spike down during 19:30, the same time period in which the atypicality 

score was high. 
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Atypicality scores were calculated for all the PMU data that we analyzed from BPA and EI.  

Preliminary investigations have occurred comparing the atypical events found with the atypicality 

scores and with the actual events in the power grid system.  The atypical events consistently find 

events that were previously known, but also time periods in which no event was recorded.  Sometimes 

an actual event does not contain unusual data and the atypicality score calculation misses them.   

 

Further investigation needs to be done correlating atypical events to actual events.  When specific 

types of actual events can be mathematically characterized, then the atypical events can be classified 

into known categories of events.  This may help attach a level of importance to each atypical event.   

 

Another area of further investigation is prediction of events.  Further research needs to be done to find 

and characterize pre-cursor activity that could lead to events.  Time series and regression models could 

be instituted to help make predictions and attach probabilities of the predicted events occurring in the 

short term.  
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Figure 1.  Phase Angle Pair Clustering Results for Fall (top plot) and Winter (bottom plot) 

 

 

 

 

 
Figure 2.  Atypicality Scores Plotted Over Time  
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Figure 3. Rationale Explaining which Variables Were Atypical and How They Were Atypical 

 

 

 
Figure 4. Performance Envelope Showing an Atypical Frequency Variable 
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