Digital Protection – Past, Present, and Future

Eric A. Udren Quanta Technology, LLC Pittsburgh, PA

Presentation for CIGRÉ Grid of the Future Symposium Boston, MA October 22, 2013 eudren@quanta-technology.com

Era of the invention of the digital relay

Late 1960s – mainframe enterprise computers

- Centralized processing.
- Office environment.
- A lot of support resources.

The first industrial minicomputers

Westinghouse P50 industrial computer

- The first industrial programmable computer system.
- Product for the factory floor.
- Power plant applications.
- Following generations
 P250, P2000
- 1970s dozens of minicomputer makers

Conception of digital relaying

G.D. Rockefeller, "Fault Protection with a Digital Computer," IEEE Transactions on Power Apparatus and Systems, April 1969.

- Work at Newark College of Engineering (now NJIT), 1967-69.
- Concept of sampling voltages and currents, perform math on the individual sample values.
- Concept of a single substation computer for all protection.
- Tried to use the computers we had not like the isolated zones of protection we had (and have)...
- Meanwhile...George was campaigning for development funds at Westinghouse Relay Division.

Prodar 70 installation and service

- PG&E Tesla Substation 230 kV control house, February 1971.
- Connected to protect Tesla-Bellota 230 kV line.
- Memory voltage, series cap line logic (adjacent 500 kV lines).
- Perfect field service until 1977.
- No failures to operate; no false trips; no failures.*
- "The Noisy Sentinel."

Quite a fast and accurate relay...

Computational methods

B.J. Mann & I.F. Morrison,
"Digital Calculation of
Impedance for Transmission
Line Protection," IEEE TPAS
,January 1971.

B.J. Mann & I.F. Morrison,"Relaying a Three PhaseTransmission Line Using aDigital Computer," IEEE TPAS,March 1971.

M. Ramamoorty, 1972 – Use of discrete Fourier transform for relaying measurement from data samples.

Never seen before from a relay...

Benefits of the first digital relay

- <u>Event record displays</u> Teletype printer event log with time tags.
- Fault location in-service accuracy comparable to that of commercial relays 15 to 20 years later.
- Analog value logs and oscillographic records output via the paper tape punch for separate plotting of oscillographic traces.
- Tailored reach characteristics, load restriction capability
- Self -monitoring of protection system electronics failure dead-man alarm, held open by active program stimulation, active monitoring of A/D converter subsystem.

Technology demonstration – not cost effective product

More digital relaying trials

- Phadke, Adamiak, et al minicomputer based relay at AEP, 1970s (& conception of synchrophasors).
- GE PROBE computer relaying system.

Second half of 1970s – Birth and evolution of the first microprocessors

- 1979-80 Dr. E. O. Schweitzer & colleagues develop efficient computations for 8 bit microprocessor; develop fault locator product with good relaying.
- Focus on cost-effective reliable solution led to massive respected manufacturing business today.
- Information access via data communications.

Digital relays today

- Most reliable generation of relays.
- Short technical life, and getting shorter.
- Self-monitoring *easier maintenance*.
- Multifunctional how many functions do we want in a box?
- Flexible and configurable thousands of settings.
- Sophisticated characteristics address difficult protection problems.

Still like electromechanical relays?

- No going back...
- Cost of microprocessor line relays is between 2% and 4% of EM panel get it in a week, not 48 weeks.

Integrating relays with data communications

- 1970s were the era of office & enterprise data networking.
- Digital relaying was demonstrated and on the way.
- Could they be combined to make a substation protection and control system that gets rid of wiring?

First protection and control system based on network data communications – 1978-86 EPRI WESPAC project

- First full installation at PG&E Deans 500 kV Substation.
- Westinghouse and GE relays interoperated via standard communications.
- Stand alone relays at other utilities.
- Included switchyard data communications...

Integrating relays with data communications

Role of IEC 61850

- 1980s 1990s relays, RTUs, IEDs with data communications ports for integration.
- Relays were marginal sources of measurement data.
- Every vendor invented "the best protocol."
- Protocol locks users into the vendor's system design.
- Combining product communications was a user headache.
- Users wanted interoperable communications...

EPRI UCA – 1990-91 (North America)

IEC 61850 – 1995-96 (International – Europe & NA)

Merged in 2000 into a single international standard communications system development - IEC 61850

Role of IEC 61850

- A protocol stack Ethernet, MMS, application.
- Not just a protocol a definition of application models exchanging standardized data objects – bigger scope.
- A host of services not a monolith.
- Support all substation communications including high speed control (GOOSE) and switchyard data acquisition (process bus).

Role of IEC 61850

- Expanded from substation to utility enterprise wide communications.
- A single international standard, with some growing pains for North American users...but the only path forward.

Industry roadmap for synchrophasor apps

Udren-Novosel Chapter 6 – PACWorld Conference 2010

- WAMS gathering, visualization, archiving.
- Use real data to tune models. Dynamic, generators, loads...
- Model secondary system (P&C) behavior.
- Develop & validate high-speed real time control algorithms.
- Expand PMU & controller infrastructure coverage, availability, latency, redundancy, security.
- Try control functions open-loop.
- Build practical PoC labs and installations.
- Close the loop protect and control the grid.

Wide Area Monitoring and Control

Eric A. Udren, Quanta Technology LLC, Pittsburgh, PA USA June 23, 2010, Dublin, Ireland

Progress reported at this conference!

Closed loop application we can do now

Wide-area current comparison backup fault protection

- Simple robust principle setting-free application.
- Nested differential zones covering multiple lines & stations.
- Predictable measurement times
- Precise dynamic zone boundaries = reduced backup time delays.
- Disconnect only what is needed to isolate any fault, even after relay and breaker failures.

Overcomes distance backup problems

- High cost of maintaining coordination of distance elements
- Some miscoordination is hard to fix we accept overtrips that could cause trouble.
- No loadability limits.
- No tripping for swings.
 - Use voltage phasors for smart splitting.
- Doesn't care about low fault contributions from power electronic interfaces or DER.
- Self-monitoring with inherent redundancy
 - Actionable alarms point to the problem.
 - Eliminates most NERC protection maintenance requirements.

Conclusion - redundant wide area architecture

- Redundant phasor gathering platform supports wide area protection.
- The same platform that supports all other wide area
- Simple and robust relaying protects the grid of the future.
- Demonstrate at no risk with today's high density PMU deployments.