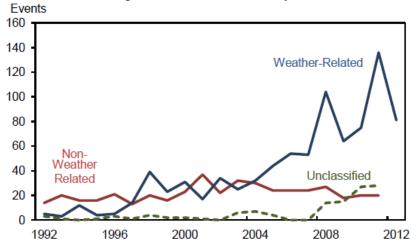


Understanding the Value of Uninterrupted Service

Paul Centolella, Vice President Analysis Group

Mark McGranaghan, Vice President – Power Delivery and Utilization Electric Power Research Institute

CIGRE Grid of the Future 2013
Technological Solutions to Regulatory Challenges
October 21, 2013

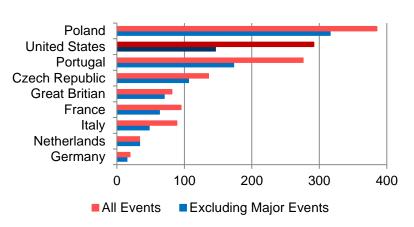


Renewed Focus on Reliability

- Superstorm Sandy Changed the Perception of Weather Risks
 - Sandy costs: \$27 \$52 billion
 - Cost of weather related power outages: \$20 billion - \$55 billion/yr.
 - Over last 20 years >178 million customers lost power in major weather related outages
 - Number of major weather related outage more than doubled in 20 years
 - National Climate Assessment: increased potential for extreme weather, peak electric demands, coastal flooding, & cooling water shortages

Renewed Focus on Reliability

- Increasing cost of service interruptions
 - Technological Change & Smart Manufacturing: greater reliance on information, communications, & digital control technologies
 - Systemic Risks in Major Outage: Interdependence of critical infrastructure
- Growing Risk of Cyber & Physical Security Events
 - Cyber Security: "The cyber threat to critical infrastructure continues to grow and represents one of the most serious national security challenges we must confront." Executive Order (Feb. 2013)
 - Physical Security: April 16, 2013 Attack on PG&E Metcalf Substation
 - National Academy of Sciences: Economic costs of terrorist attack on U.S. power delivery system could be as high as hundreds of billions of dollars
- Impacts on Utility Business Model
 - Customers invest in dispersed generation if grid perceived to be unreliable


How Reliability is Addressed in Regulation

- Quality Regulation Reporting or targets: 23 States, Penalties: 11 States, Adjust rates for performance: 5 States
- Storms lead to regulatory reviews in affected states: MD, NJ, NY, CT, MA, IL
 - Standards often did not address storm restoration, but evolve
- Value of uninterrupted service is seldom quantified
 - Economic justification for reliability investments typically lacking
- Regulator balances reliability & cost based on limited information
 - Least cost focus can lead to externalizing costs to consumers
 - Equivalent reliability leads to focus on worst circuits rather than greatest value

Regulatory Reliability Standards 2005

Average Minutes of Service Interruption Per Customer

Value of Uninterrupted Service

- Value of uninterrupted service varies between customer classes
 - U.S. Department of Energy Meta-analysis results:

	Cost per Unserved kWh		Cost per Event	
	30 Minute	8 Hour	30 Minute	8 Hour
	Outage	Outage	Outage	Outage
Residential	\$ 3.50	\$ 0.90	\$ 2.70	\$10.60
Small C&I	\$396.30	\$ 296.10	\$435.00	\$ 5,195.00
Medium & Large C&I	\$ 22.60	\$10.60	\$ 9,217.00	\$ 69,284.00

- Value of uninterrupted service varies within customer classes
 - U.S. Department of Energy Meta-analysis results:

Average Electric Medium & Large Customer Interruption Cost per Event						
(2008\$)						
	Momentary	1 Hour	8 Hour			

	Momentary	1 Hour	8 Hour
Agriculture	\$4,382	\$8,049	\$41,250
Trade & Retail	\$7,625	\$13,025	\$58,694
Mining	\$9,874	\$16,366	\$70,281
Services	\$8,283	\$14,793	\$71,997
Manufacturing	\$22,106	\$37,238	\$164,033
Construction	\$27,048	\$46,733	\$214,644

Limitations of DOE Outage Cost Analysis

- U.S. Department of Energy through Lawrence Berkeley National Lab has developed tools for estimating outage costs to customers
 - Interruption Cost Estimate Calculator: http://www.icecalculator.com/
 - Most accessible data on U.S. customer outage costs
- Based on utility surveys using standard 1995 EPRI methodology
- Underlying data needs to be updated and expanded
 - Based on surveys conducted for 9 utilities from 1989 to 2005
 - Only 2 utility datasets include surveys conducted after the year 2000
 - None of the data from Northeastern, Mid-Atlantic, or Mountain West states
 - None of the surveys asked about outages lasting longer than 8 hours

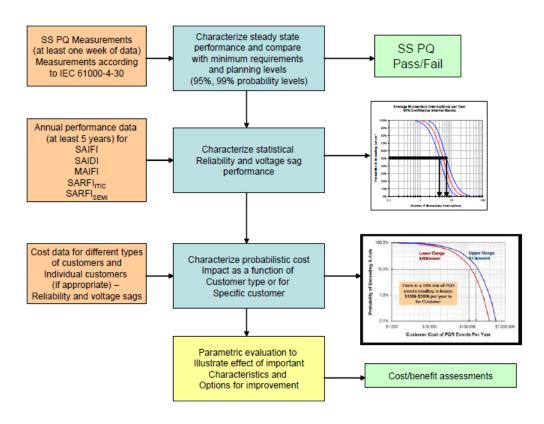
Methods for Estimating Value of Uninterrupted Service

- Survey-based methods: Most widely used approach
 - Can obtain outage costs for variety of conditions by asking about outages of varying durations, with / without advance notice, in different seasons, or at different times of day
 - Properly structured surveys can provide robust content validity: customer is in the best position to assess the impacts based upon their experience & requirements
 - Stratified sampling can ensure desired precision and representation of customer populations of interest
- Commercial and industrial surveys use "Direct Worth: approach:
 - Customers asked about the value of lost production, other outage related costs, & outage related savings, taking into account their ability to make up for any lost production
- Residential surveys use "Willingness to Pay" and/or "Willingness to Accept" approach:
 - Most residential impacts are not directly observable economic costs but quality of life impacts
 - Survey "willingness to pay" to avoid specific outages and / or the amount of compensation required to agree to specific interruption, "willingness to accept"

Alternative Methods for Estimating Outage Costs

- Proxy "revealed preference" methods: Uses an observable behavior to estimate value of outage avoidance, e.g. if customer purchases back-up generator, the customer's expected cost of avoided outages may be equal to or exceed the cost of the backup power supply
 - Proxy methods are available in limited circumstances where behavior is observed & suggest only an upper or lower bound on outage costs.
- Consumer surplus: Estimates based on observations of longer term price elasticity.
 - Drawback of relying on assumed correspondence between long-term elasticity for known price changes and short-term outage costs has severely restricted its use
- Reliability demand models: In developing countries may include the quality of service purchased in a demand models
 - Given uniformly high levels of U.S. reliability, approach is not been applied here

Extending Survey Methods


- Customer segmentation: Modern statistical methods applied to additional customer data may identify segments that place the greatest value on reliability.
 - Traditional customer classifications may not be the only or most important drivers of differences in the value of uninterrupted service
 - Linking to other demographic and / or psychographic information may identify customer characteristics most associated with valuing reliability
 - By providing targeted service offerings, utility may be able to provide greater reliability, at less cost, & with reduced environmental impacts compared to customer dispersed generation
- Service Quality Index: For key customers service quality & customer satisfaction not related only to traditional reliability indicators (SAIFI, SAIDI, CAIDI), may be impacted by:
 - Power quality characteristics affecting customer equipment
 - Disturbances including momentary outages and voltage sags
 - Weighting different effects based on their potential economic impacts for the customer can help characterize the quality of service provided

Service Quality Index

- Service Quality Index provides:
 - Exploring options for key customers
 - Including steady state power quality, momentary outage & voltage sag impacts
 - Exploring probability of such impacts
 - Incorporating representative or customer specific economic value

Procedure for Applying Service Quality Index

Reliability from a Customer Perspective

- Utilities face significant investment requirements in a challenging environment – setting reasonable priorities requires a consistent economic framework
- Understanding the value of uninterrupted service can enable utilities to:
 - Support and prioritize investments to replace aging infrastructure, in advanced distribution automation, in outage management systems and advanced metering infrastructure, and in grid hardening and climate adaptation
 - Help utilities assess business risks: Customers will tend to pursue dispersed generation based on value they place on uninterrupted service
 - Enable utilities to offer value added services to customers willing to pay for enhanced levels of reliability
- New studies needed to understand reliability from a customer perspective

Paul Centolella

Vice President
111 Huntington Ave. 10th Floor
Boston, MA 02199
(617) 425-8182
pcentolella@analysisgroup.com

Mark McGranaghan

Vice President, Power Delivery and Utilization 942 Corridor Park Boulevard Knoxville, TN 37932 (865) 218-8029 mmcgranaghan@epri.com