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Overview 

 Introduction: The solar “problem” and our limitations  

 Modeling 

What information do we have? 

Solar Irradiation characteristics 

Simple Model & Time Series 

Error analysis 

 Examples of use 

Light load problems 

Peak conditions 

 Conclusions and Comments 

 Outlook 
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Introduction - The solar “problem” 

 Current deployment rate in Massachusetts: 

 From 2007 solar capacity increased from 7MW to 250 MW  

 Goal: 1,600 MW of PV installed in Massachusetts by 2020 

 In 2012, 34 MW of “residential” PV was added (NG territory) 
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 What level of generation should I use 

during my long term studies? 

 How will PV installations affect Peak 

and Light load conditions? 

 What kind of voltage effects will the 

PV units have on my feeders? 

 What kind of impact the future levels 

of PV penetration will have on my 

feeders? 

 What effect would PV units have on 

DG limits during switching events? 

Introduction - Our limitations 

 Visibility: 

 Real time generation  

 Geographical location 

? 
Decisions need to be made for 

the next 5, 10, 15 years! 
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Solar generation - What we have 
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Sutton/Northbridge Solar Power Project  

• 4,683 solar panels, 983 kW (DC) 

• Real Time generation monitoring 

• Irradiation and Temperature monitoring 

National Grid – Delivery Services, “Sutton/Northbridge Solar Power Project”, 

(http://www.nationalgridus.com/masselectric/solar/sutton.asp, 2013, [Accessed June 2013])  

http://www.nationalgridus.com/masselectric/solar/sutton.asp
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Solar irradiation - Characteristics 

ID: Direct irradiation [W/m2] 

Id: Diffuse irradiation [W/m2]  

Ir:  Reflected irradiation [W/m2] 

q:  Incident angle 

A: Apparent solar irradiation coefficient 

B: Atmospheric extinction coefficient 

b: Solar altitude angle 

C: Ratio of diffuse radiation on a horizontal    

    surface to the direct solar radiation 

FSS: Angle factor between surface and sky 

Fsg: Angle factor between surface and ground 

ItH: Total horizontal irradiation 

T D d r

-B/sin( )

D d D SS r tH g sg

I I * cos( ) I I  

I A e  ; I C * I *F  ; I I * *Fb

 q  

    

American Society of Heating, Refrigerating and Air-Conditioning Engineers, “2011 ASHRAE Handbook - Heating, 

Ventilating, and Air-Conditioning Applications (I-P Edition)”, (ISBN: 978-1-936504-06-0, Apr 2012)  
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Solar irradiation - Modeling 

-B/sin( )

T D d r D d D SS r tH g sgI I * cos( ) I I  ; I A e  ; I C*I *F  ; I I * *Fb q       

oH=((Time(mins)-720)/4)*15

  o oδ=23.45 *sin 360 * 284+N /365

a2: Azimuth angle of solar panel 0 if facing South) 

LAT: Latitude angle   

T: Tilt of the solar panel (set to LAT) 

H: Number of Sun hours  

d: Declination angle  

N: Day Number (1=January 1st) 

b: Solar altitude angle q:  Incident angle 

a1: Solar azimuth angle  

sin(β)=cos(LAT)*cos(δ)*cos(H)+sin(LAT)*sin(δ)

1 2cos(θ)=sin(β)*cos(T)+cos(β)*sin(T)*cos(α -α )

-1

1

(sin(β)*sin(LAT)-sin(δ))
α =cos *sgn(H)

cos(β)*cos(LAT)

 
 
 
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Solar irradiation - Modeling 

     
365

-1 -1

N=1

SV(t)= u t- 1440*N-720-cos (-tan(L)*tan(δ))*4  + u t- 1440*N-720+cos (-tan(L)*tan(δ))*4

-1SS=720min ± cos (-tan(L)*tan(δ))*4min/deg

UO SRML: Sun path chart program [online] (Available from: http://solardat.uoregon.edu/SunChartProgram.html, 

2007, [Accessed June 2013])  

http://solardat.uoregon.edu/SunChartProgram.html
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Solar irradiation - Model comparison 

  

     

-B/sin( )

T SS tH g sg

365
-1 -1

N=1

I A e * cos( ) C *F + I * *F *

     u t- 1440*N-720-cos (-tan(L)*tan(δ))*4  + u t- 1440*N-720+cos (-tan(L)*tan(δ))*4

b  q  

 
 
 


A: Apparent solar irradiation coefficient 

B: Atmospheric extinction coefficient 

C: Ratio of diffuse radiation on a horizontal a 

horizontal surface to the direct solar radiation 

q:  Incident angle 

b: Solar altitude angle 

FSS: Angle factor between surface and sky 

Fsg: Angle factor between surface and ground 

ItH: Total horizontal irradiation 
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Solar irradiation - Error decomposition 

R. B. Cleveland, W. S. Cleveland, J.E. McRae, and I. Terpenning, “STL: A Seasonal-Trend Decomposition Procedure 

Based on Loess”, (Journal of Official Statistics, 6, 3–73, 1990)  
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Solar generation - Simplified model 
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Examples of use 
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Light Load May 9

Solar Generation ~ 90%

 In New England, the effects on feeders from solar generation during May can 

be bigger than during Summer time 
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Solar Generation ~ 90% near noon

Summer Peak

Solar Generation ~ 45% at peak
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Examples of use 

 Also, during annual coincidental peak time, solar generation gets close to 

45% of the nameplate 
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 For this particular area, capacity planning analysis (Peak) can be done 

considering PV generation of up to 45% (even a 65% can be used as a 

conservative number) 

 Depending on the study, different loading levels can be chosen. A “clear 

sky” value would give the most “reasonable” value for the maximum 

expected solar generation 
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Conclusions and Comments 

 A procedure to create a solar generation model was presented. The 

model can bring more clarity to planners by estimating generation of solar 

units that are not “visible” on the system 

 The model, based on solar irradiation, can be easily customized to the 

location of analysis  

 Local data of solar generation, if available, can be used to calibrate the 

model. This requires error analysis 

 Once implemented for a certain region, it can be saved as a lookup table 

for easy reference 

 “Clear sky” values of generation can be used for planners to do their 

analysis during peak and light load conditions. The same can be applied to 

DG limits on feeders during temporary switching 

 Analysis of the error between theoretical values and local measurements 

presents an opportunity for modeling (stochastic) of cloud coverage 
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Outlook – More data! 
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Thank you! 


